NUCLEAR QUADRUPOLE RESONANCE IN COORDINATION COMPOUNDS

T.	RAMA	AKRISHNAN at	AS SOUND	IARARAJAN

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalors — 560 012 (India)

V.S.S. SASTRY and J. RAMAKRISHNA

Department of Physics, Indian Institute of Science, Bangalore — 560 012 (India) (Received 6 August 1976)

CONTENTS

I.	Introduction			124
II.	Basic theory	•		125
	1. Nuclear quadrupole Hamiltonian and energy levels			125
	2. Temperature dependence of NQR			127
	3. Zeeman NQR and the determination of η			. 128
	4. NQR and chemical binding			. 128
	a. Townes and Dailey treatment			128
	b. Cotton and Harris treatment			130
	c. Point charge model calculations			131
III.	Investigations in coordination chemistry			131
	A. Halogen resonances			131
	1. Hexahalometallates			131
	a. Metal-halogen bonding in hexahalometallates			132
	b. Effect of cations on the NQR frequency of hexahalometallates			135
	c. Effect of temperature on the halogen NQR frequencies in hexa-			
	halometallates	_		142
	2. Tetrahalometallates			146
	3. Other halometallates	-		150
	4. Miscellaneous			151
	B. Copper-63 and copper-65 resonances	•		159
	C. Gallium-69 resonances	•		160
	D. Arsenic-75 resonances	•	•	161
	E. Mercury-201 resonances	•	•	161
	F. Nitrogen-14 resonances			161
	G. Manganese-55 resonances	-		162
	H. Rhenium-185 and rhenium-187 resonances	-		167
	I. Antimony-121 and antimony-123 resonances	•	•	167
	J. Cobalt-59 resonances	•	•	168
	K. Niobium-93 resonances	•	•	174
	I. Indium-115 resonances	•	•	174
	T D: 000	•	•	174
T \$ 7	M. Bismuth-209 resonances	•	•	175
ΙV.	References	•		TIO

I. INTRODUCTION

From the hyperfine structure of the atomic spectra of europium, Schuler and Schmidt [1] first indicated that a nucleus may possess an electric quadrupole moment and a magnetic dipole moment, the former having its origin in a non-spherical distribution of the nuclear charge. As a result of the non-spherical distribution of the nuclear charge, the nucleus has an orientation-dependent electrostatic interaction with its environment. Nuclear quadrupole resonance (NQR) spectroscopy is a branch of radiofrequency spectroscopy which has been adapted to study the small interaction energies which nuclear moments give rise to.

Since the NQR frequency depends on the electric field gradient at the nucleus under study, the NQR data can provide valuable information about the electronic structure of the molecules in the solid state. As the distortion of the core electrons due to polarization effects can modify the field gradient at the nucleus appreciably, the calculation of internal field gradients, effective in the nuclear quadrupole interaction, represents a delicate and often difficult problem. It follows that it is often difficult to interpret observations in highly quantitative terms.

The nuclear quadrupole interaction is affected by the internal motions of atoms, groups of atoms or molecules in the solid state. The two types of molecular motions which are expected to have an appreciable effect on the NQR frequency are torsional oscillations and hindered rotations. The frequencies of molecular motions are orders of magnitude higher than the Larmor frequencies of the quadrupolar nuclei and hence the nuclei see only the average value of the electric field gradient. As these motions are temperature dependent, NQR frequency shows variation with temperature. The temperature coefficient $(\partial \nu/\partial T)_P$ of the NQR frequency is generally negative. Apart from giving valuable information about bonding in molecules, temperature dependence studies throw light on phase transitions and hydrogen bonding in solids.

NQR is useful in detecting chemical and physical inequivalences in solids. While chemical inequivalence gives a multiplet of pure NQR lines, the physical inequivalence can be detected only through a study of the Zeeman NQR in single crystals. Also, a study of Zeeman NQR, particularly for nuclei having spin quantum number I=3/2, will yield the asymmetry parameter, η , which is related to the electronic configuration of the atom under study. In favourable cases it is also possible to obtain η in polycrystalline solids.

The first observation of NQR was made by Dehmelt and Kruger [2] in trans-dichloroethylene, while Kruger and Meyer-Berkhout [3] were the first to observe NQR in a coordination compound (⁶³Cu NQR in K[Cu(CN)₂]). Since then many organic and inorganic compounds have been studied by NQR. The NQR effect, the techniques involved, the application and the interpretation of NQR results have been dealt with in a number of review articles [4–18]. Two excellent books have also appeared on the subject [19,20].

The present review is concerned with the application of NQR in coordination chemistry. The review is divided into two major parts, viz. basic theory and application. The basic theory is dealt with only briefly as an introduction to the applications. The literature covered is through 1975; most of the Russian work dealt with is based on "Chemical Abstracts".

II. BASIC THEORY

1. Nuclear quadrupole Hamiltonian and energy levels

In the multipole expansion of the electrostatic interaction of a quadrupolar nucleus with the surrounding charge distribution, the only orientation dependent term is that due to the quadrupolar interaction between the quadrupole moment of the nucleus and the electric field gradient (EFG) at the site of the nucleus produced by surrounding electric charges, the higher order terms (like the hexadecapole term) being negligible [21]. The nuclear quadrupole interaction can conveniently be expressed in terms of nuclear spin operators using the Wigner—Eckart theorem. The Hamiltonian so derived can be expressed in the principal axis of the EFG, obtaining

$$\mathcal{H}_{Q} = A \left[(3I_{z}^{2} - I^{2}) + \frac{\eta}{2} (I_{+}^{2} + I_{-}^{2}) \right]$$
 (1)

where $A=e^2Qq/4I(2I-1)$ and $\eta=(V_{xx}-V_{yy})|V_{zz}$ with the convention $|V_{xx}| \leq |V_{yy}| \leq |V_{zz}|$. V is the electrostatic potential at the site of the nucleus and V_{xx} , V_{yy} and V_{zz} are the EFGs along the prinzipal x, y and z directions. Conveniently, V_{zz} is written as eq. Since $V_{xx}+V_{yy}+V_{zz}=0$ (Laplace equation), η lies in the range zero to 1. eQ is called the quadrupole moment of the nucleus and is defined as

$$eQ = \int (3z^2 - r^2)\rho(r) d\tau$$

where $\rho(r)$ is the nuclear charge density at the point r inside the nucleus. The x, y, z axes with respect to which eQ is defined are the same as the principal x, y, z axes of the EFG.

The matrix elements of \mathcal{H}_Q in the case of axially symmetric EFG $(\eta = 0)$ are

$$\langle Im | \mathcal{H}_Q | Im' \rangle = \frac{e^2 Qq}{4I(2I-1)} [3m^2 - I(I+1)] \delta_{mm'}$$
 (2)

For $\eta \neq 0$, I_+^2 and I_-^2 operators in eqn. (1) lead to a mixing up of states giving matrix elements of the type

$$\langle Im | \mathcal{H}_{Q} | Im' \rangle = \frac{e^{2}Qq}{4I(2I-1)} [3m^{2} - I(I+1)] \delta_{mm'} + \frac{1}{2} \eta [(I \mp m)(I \mp m-1)(I \pm m+1)(I \pm m+2)]^{1/2} \delta_{m\pm 2,m'}$$
(3)

The degree of mixing increases as η increases and as η tends to zero, eqn. (3) reduces to eqn. (2). In the case of half integral spins, there are $I + \frac{1}{2}$ energy levels, all doubly degenerate. For I = 3/2 (e.g. ³⁵Cl, ³⁷Cl, ⁷⁹Br, ⁸¹Br, ⁶³Cu etc.) the energy matrix can be solved exactly [19] giving (Fig. 1)

$$E_{\pm 3/2} = \frac{e^2 Qq}{4h} [1 + (\eta^2/3)]^{1/2}$$

$$E_{\pm 1/2} = \frac{-e^2 Qq}{4h} \left[1 + \left(\frac{\eta^2}{3} \right) \right]^{1/2} \tag{4}$$

with the single transition frequency

$$\nu = \frac{e^2 Qq}{2h} \left[1 + \left(\frac{\eta^2}{3} \right) \right]^{1/2} \tag{5}$$

Thus, for I=3/2, NQR does not permit the evaluation of e^2Qq and η simultaneously. However, by the application of a small magnetic field (ca. 20–100 gauss), the I degeneracy can be lifted and a study of the resulting Zeeman spectrum will give information about η and the orientation of EFG axes (in single crystals). For higher half integral spins, the secular equations are not exactly soluble, and the transition frequencies are available, for small η values, in literature [22]. However, for moderately large η values, the Hamiltonian must be diagonalized by numerical methods [23–25].

Among the nuclei with integral spins, nitrogen is one of the most impor-

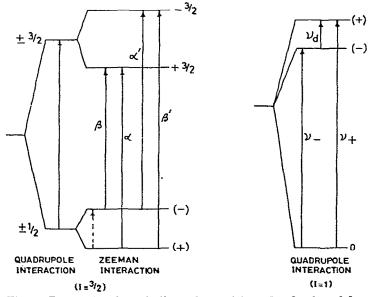


Fig. 1. Energy levels and allowed transitions for I=1 and I=3/2 nuclei.

tant (I = 1) and in this case the eigenvalue problem can be solved exactly giving

$$E_1 = \frac{e^2 Qq}{4} \left(1 + \eta\right)$$

$$E_2 = \frac{e^2 Q q}{4} (1 - \eta) \tag{6}$$

$$E_3 = \frac{-e^2 Qq}{2}$$

with the transition frequencies

$$\nu_{\pm} = \frac{3e^2Qq}{4h} \left[1 \pm \left(\frac{\eta}{3} \right) \right] \tag{7}$$

$$v_d = \frac{e^2 Qq}{2h} (\eta) \tag{8}$$

2. Temperature dependence of NQR

As mentioned earlier, the NQR frequency is affected by molecular motions, particularly the torsional oscillations. Bayer [26] was the first to analyse the temperature dependence of NQR and to show that the torsional motion affects the NQR spectrum in two ways: (i) the resonance frequency is shifted since the nucleus sees a temperature dependent average field gradient, (ii) the relaxation processes are affected leading to a variation of line shape and intensity. Bayer assumed that these motions are harmonic and are taking place about the three principal axes of the EFG tensor. His calculations show that the NQR frequency at any temperature T is given by

$$v_T = v_Q \left[1 - \frac{3h}{8\pi^2} \sum_i \frac{1}{I_i v_i} \left(\frac{1}{2} + \frac{1}{\exp(h v_i / kT) - 1} \right) \right]$$
 (9)

where ν_Q is the NQR frequency of the stationary molecule (which is given by the extrapolated frequency at 0 K in good approximation), ν_i and I_i are the frequency and the corresponding moment of inertia of the torsional motion about the *i*th axis and the summation is over the x and y modes. It is further assumed that the effect of η is negligible in the first order. Bayer's results have been generalized by Kushida [27] who expressed the motions about the EFG axes in terms of normal coordinates and an equation similar to eqn. (9) was obtained involving normal modes and equivalent moments of inertia.

The effect of volume changes on the NQR frequency was first considered by Kushida et al. [28]; their calculations require a knowledge of parameters like the coefficient of thermal expansion, Grüneisen constant etc., and so are not generally practicable. Brown [29] tried to include the effect of volume change, in a molecular crystal, in a simple way by assuming that torsional frequencies (ν_i) themselves are temperature dependent. He further assumed, on the basis of the results of Ichishima [30], that ν_i varies linearly with temperature. With such simplifying assumptions, Brown [29] showed that the NQR data at high temperature, $h\nu_i/hT << 1$, can be used to evaluate the average weighted temperature coefficient of torsional frequencies.

3. Zeeman NQR and the determination of η

The application of a weak magnetic field (20–100 gauss) splits the pure NQR spectrum of an I=3/2 nucleus into four lines. An angular variation study of these lines leads to the determination of η [19,23,31] in single crystals. Even in the case of polycrystalline samples, it is still possible to estimate η through a study of certain characteristic features of the Zeeman NQR spectrum [32–35]. As it is not always possible to grow big single crystals suitable for single crystal Zeeman NQR studies, Zeeman NQR of polycrystalline samples is attractive even though the information about the EFG directions is lost. Further, the powder Zeeman NQR method is especially suitable for low melting (below room temperature) substances.

4. NQR and chemical binding

Accurate interpretation of e^2Qq and η in terms of charge distribution in a given molecule may prove to be difficult; however, approximate calculations with a few simplifying assumptions may be useful, particularly in a comparative study of a family of compounds. Townes and Dailey [36] were the first to introduce certain approximations and express the coupling constant in terms of bond characters and their procedure has been extensively applied by a number of workers. Also, their work formed the basis of later modifications (e.g. Cotton and Harris [37]).

a. Townes and Dailey treatment. The contribution to EFG at the nucleus A due to an electron in the ith M.O. of the molecule is given by

$$(q_z^{\mathbf{A}})_i = \int \psi_i^* \left(\frac{3\cos^2\theta - 1}{r^3} \right) \psi_i d\tau \tag{10}$$

where ψ_i is the wave function of an electron in the *i*th M.O. Expressing ψ_i in terms of atomic orbitals,

$$\psi_i = \sum_{i=1}^{j=n} C_i \phi_j \tag{11}$$

one may arrive at the total field gradient at A, given by

$$q_{z}^{A} = \sum_{i} N_{i} \left\{ \sum_{j} C_{j}^{2} q^{jj} + \sum_{k} C_{k}^{2} q^{kk} + \sum_{j} \sum_{\substack{j \\ j \neq k}} C_{j} C_{k} q^{jk} + \sum_{k} \sum_{\substack{l \\ k \neq l}} C_{k} C_{l} q^{kl} \right\} + q_{\text{nuclei}}$$
(12)

where N_i is the population of the *i*th M.O. and q_{nuclei} , the contribution from charges outside the atom A under consideration.

The following assumptions have been made to simplify eqn. (12); (i) q^{kk} arising from core electrons of atoms other than A and q_{nuclei} are negligible, (ii) the EFG due to overlap of atomic orbitals of A with those of other atoms, q^{ik} , is negligible, (iii) q^{kl} arising from the overlap between atomic orbitals of atoms other than A is negligible and (iv) in the absence of polarizing effects, the contribution to EFG from the core orbitals of A (q^{ij}_{core}) is negligible. Under the above assumptions, the contribution to EFG from the valence electrons can be expressed as

$$q_z^{\mathbf{A}} = \sum_i N_i \left\{ \sum_j C_j^2 q^{jj} + \sum_j \sum_{j'} C_j C_{j'} q^{jj} \right\}$$
 (13)

where $q^{jj'}$ due to the cross terms is negligible unless the difference in orbital quantum number of ϕ_j and $\phi_{j'}$ (Δl) is equal to 2. When only s and p orbitals are considered (as in the case of chlorine) $q^{jj'}=0$ and when d orbitals are required to describe the bonding, the small, but finite, value of s-d integral is usually neglected.

Further simplification can be effected on the first term in eqn. (13). Since the s orbitals are spherically symmetrical, they do not contribute to the EFG. Contribution from d and f orbitals to the EFG is comparatively smaller than that of the p orbital and can be neglected. Thus, the EFG at A (e.g. a chlorine atom) due to p orbitals alone can be expressed to a good approximation by

$$(q_z^A)_i = C_x^2 q_z^x + C_y^2 q_z^y + C_z^2 q_z^z \tag{14}$$

with

$$q_m^n = \int p_n^* v_{mm} p_n \mathrm{d}\tau$$

But

$$q_x^x = q_y^y = q_z^z = q_p \tag{15}$$

and

$$q_x^y = q_x^z = q_y^x = q_z^z = q_z^z = q_z^y = -q_{n/2}$$
 (16)

Here q_p is the EFG due to an unbalanced p electron and is experimentally determined. Thus,

$$(q_z^A)_i = \left[C_z^2 - \frac{1}{2} \left(C_x^2 + C_y^2\right)\right] q_p \tag{17}$$

and

$$e^{2}Qq = \sum_{i} N_{i} [(C_{z}^{i})^{2} - \frac{1}{2} \{(C_{x}^{i})^{2} + (C_{y}^{i})^{2}\}] e^{2}Qq_{p}$$
 (18)

or

$$e^2Qq = \alpha \cdot e^2Qq_p \tag{19}$$

where

$$\alpha = \sum_{i} N_{i} [(C_{z}^{i})^{2} - \frac{1}{2} \{(C_{x}^{i})^{2} + (C_{y}^{i})^{2}\}]$$

Here the coefficients $(C_z^i)^2$, $(C_y^i)^2$ and $(C_x^i)^2$ are the weights of the p_z , p_y and p_x orbitals respectively used in the M.O. which describes the bond. Assuming s and d hybridization in the bonding orbital of chlorine, it can be shown that

$$\alpha = (1 - s^2 + d^2 - i - \pi) + i(s^2 - d^2) \tag{20}$$

where i is the ionic character and π is the π character of the bond between chlorine and another atom. s^2 and d^2 are the amounts of s and d characters in the bonding atomic orbital of chlorine. When d^2 and π are small, eqn. (20) reduces to eqn. (21).

$$\alpha = (1 - i)(1 - s^2) \tag{21}$$

Similarly when only one of the p_x and p_y orbitals is involved in the π bond, eqn. (20) can be written as

$$\alpha = (1 - s^2)(1 - i) - (\pi/2) \tag{22}$$

The problem of hybridization of the halogen bonding orbitals has been dealt with by many authors [36,38,39]. According to Townes and Dailey, the s hybridization is taken as 15% when the halogen is bound to an atom whose electronegativity is less than that of the halogen by 0.25 units. In all the other circumstances s character is taken as zero. The amount of d character is proposed to be 5% or less and in most cases considered negligible. Thus according to Townes and Dailey, the changes in e^2Qq for different molecules are due mainly to changes in the ionic character of the bond. Gordy [38] has preferred to take s hybridization always equal to zero. Bersohn and Shulman [39] have concluded from their NQR and ESR studies with the transition metal chlorides that s hybridization in the bonding orbital of chlorine in these compounds is negligible.

b. Cotton and Harris treatment. Cotton and Harris [37] have shown through a molecular orbital procedure that

$$e^2Qq = \sum f_i \cdot e^2Qq_{\text{atom}} \tag{23}$$

where

$$f_{j} = \sum_{i} N_{i} (C_{i}^{2} + C_{i} \sum_{k > j} C_{k} S_{jk})$$
(24)

Here S_{jk} is the overlap integral between atomic orbitals ϕ_j and ϕ_k and the other terms have the same meaning as in Sect. II.4.a. Equation (23) is the M.O. analogue of Townes and Dailey expression (19) and reduces to the same when S_{jk} is zero.

c. Point charge model calculations. In addition to the contribution from the charges within a given molecule, lattice contributions to the EFG become significant in the case of ionic solids. The observed e^2Qq is in fact a sum of contributions from the electrons within the molecule, $q_{\rm bound}$, and those from the lattice, $q_{\rm lattice}$. Hence,

$$q_{\text{total}} = q_{\text{lattice}} + q_{\text{bound}} \tag{25}$$

 $q_{\rm lattice}$ can further be resolved into $q_{\rm dir}$, EFG due to direct electrostatic effect of external ions, and $q_{\rm ind}$ which takes into account the indirect effect (e.g. the distortion or polarization of the ion in question) caused by the external ions.

 $q_{\rm dir}$ can be calculated from the known crystal structure by considering the charges in a sphere of chosen radius using a point charge model [40]. Thus,

$$q_{\rm dir}^{ij} = \sum_{\rm B} Z_{\rm B} (3x_i^{\rm B} x_j^{\rm B} - r_{\rm B}^2 \delta_{ij})/r_{\rm B}^5$$
 (26)

where Z_B is the charge on the ion B having coordinates x_i^B at a distance r_B from the origin. $\delta_{ij} = 1$ when i = j, and zero when $i \neq j$. The polarization effect [41] due to the lattice is difficult to estimate and is generally taken into account by multiplying $q_{\rm dir}$ with a suitable numerical factor. Hence, the EFG at the origin is given by

$$q^{ij} = (1 - \gamma_{\infty})q_{\text{dir}}^{ij} \tag{27}$$

where γ_{∞} is the Sternheimer antishielding factor. In solids with appreciable asymmetry values, the point charge model fails in predicting the value of η . Several authors have tried to improve the point charge model by introducing effects due to dipoles and multipoles on q^{ij} . Attempts have also been made to consider the overlap of orbitals in computing the EFG.

III. INVESTIGATIONS IN COORDINATION CHEMISTRY

A. Halogen resonances

1. Hexahalometallates

The group of coordination compounds most extensively studied by NQR spectroscopy is the hexahalometallates [42—95]. The first NQR signal in this series of compounds was observed by Nakamura et al. [42] in the compound K₂PtCl₆. A number of reports on a variety of hexahalometallates with different central metal ions in their various oxidation states has appeared since then [43—95]. These studies have been successfully employed in understanding the electronic structure and other physical and chemical properties of these complexes.

- a. Metal—halogen bonding in hexahalometallates. Nakamura et al. [11,42—58] have analysed the halogen NQR data in a number of hexahalometallates in terms of Townes—Dailey treatment assuming negligible d character and 15% s character in the M—X bond. The results of the analyses show the following trend:
- (i) the covalent character of the M-X bond increases with decreasing electronegativity of the halogen;
- (ii) the covalent character of the M-X bond increases with decreasing difference between the electronegativities of the atoms forming the bond.

A plot of the ionic character of the M—X bond against the electronegativity difference between the atoms involved in the bond (Fig. 2) shows a few distinct features. The complexes studied fall into three distinct classes comprising complexes derived from metal ions having the same outer electronic configuration. The higher degree of ionic character shown by Sn—Cl, Pb—Cl, Se—Cl and Te—Cl bonds is consistent with the completely filled d-shells of these metal ions which use only s and p orbitals for M—X bonding. Although Sn^{IV} and Pb^{IV} are more electropositive than tellurium(IV), the ionic character of the M—X bond in hexachlorostannates(IV) and hexachloroplumbates(IV) is almost equal to that of the hexachlorotellurates(IV). This has

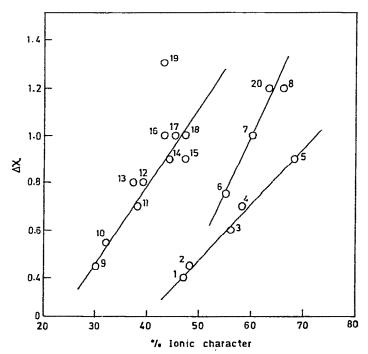


Fig. 2. Correlation between the percent ionic character of the M—X bond and the electronegativity difference between M and X. (Figure redrawn with the permission of the publisher, Academic Press, and the authors from ref. 11.) 1. Se—Br; 2. Te—I; 3. Se—Cl; 4. Te—Br; 5. Te—Cl; 6. Sn—I; 7. Sn—Br; 8. Sn—Cl; 9. Pt—I; 10. Re—I; 11. Pt—Br; 12. Re—Br; 13. Pd—Br; 14. Pt—Cl; 15. Ir—Cl; 16. Pd—Cl; 17. Re—Cl; 18. Os—Cl; 19. W—Cl; 20. Pb—Cl.

been attributed to the difference in the electronic structure of the central metal ions [41]. Even though, Nakamura et al. [45,51] have not considered the possibility of M-X π-bonding in [SnCl₆]²⁻ and [PbCl₆]²⁻, there are evidences [59,60] to show that Ge-Cl, Sn-Cl and Pb-Cl bonds have definite though small π-character. For example, Brill and co-workers [59] have shown that Ge-Cl bond in [GeCl₆]²⁻ ion has a "non-negligible" π-character. The hexahalometallates of Ir^{IV}, Os^{IV}, Re^{IV}, Mn^{IV}, Tc^{IV}, Mo^{IV} and W^{IV}, in

The hexahalometallates of Ir^{IV} , Os^{IV} , Re^{IV} , Mn^{IV} , Tc^{IV} , Mo^{IV} and W^{IV} , in which the central metal ion has vacancies in the t_{2g} orbitals, show resonances at lower frequencies than the corresponding hexahaloplatinate(IV) and hexahalopalladate(IV). The change in the NQR frequency with the d-electron configuration is approximately linear. Nakamura et al. [48,49] have explained the lower coupling constants in these paramagnetic complexes in terms of the π -character of M-X bonds involving p_x and p_y orbitals of halogens and vacant t_{2g} orbitals of metal ions. Using the equation,

$$e^{2}Qq = [(1-s^{2})(1-i-\pi) - (\pi/2)]e^{2}Qq_{\text{atom}}$$
(28)

Nakamura et al. have calculated the ionic character of the M–X bond in these complexes. Based on the work of Owen and co-workers [96–99], Nakamura and co-workers [48,53] have assumed that the degree of π -bonding is 5.4% per vacancy in the metal t_{2g} orbital. Thus, for the ions Ir^{IV} , Os^{IV} , Re^{IV} and W^{IV} , which have one, two, three and four vacancies respectively in the t_{2g} orbitals, the percentage of π -character in the M–X bond will be 5.4, 10.8, 16.2 and 21.6 respectively [48,53]. Calculations using eqn. (28) show that with increasing π -character of the M–X bond, the M–X σ -character decreases (Table 1). The ionic character of the M–X bonds calculated for the paramagnetic complexes correlates well with the electronegativity differences between the halogen and the metal ion (Fig. 2). The hexachlorotungstate(IV) ion shows a deviation from this trend and this has been attributed to errors, which are large for this complex ion [11], due to various assumptions involved in the calculation.

TABLE 1 σ and π contributions to the M-X bond in a few hexahalometallates(IV) as calculated by Nakamura et al.

Complex	Electronic configuration	σ-character	π -character	Ionic character	Ref.
K ₂ PtCl ₆	d^6	0.560	_	0.440	42
K ₂ IrCl ₆	d ⁵	0.480	0.054	0.466	48
K2OsCl6	d^4	0.430	0.108	0.462	48
K ₂ ReCl ₆	d^3	0.390	0.160	0.450	53
K ₂ WCl ₆	d^2	0.350	0.220	0.430	53
K ₂ ReBr ₆	d^3	0.450	0.160	0.390	53
K ₂ ReI ₆	d^3	0.520	0.160	0.320	53

Although Nakamura et al. assumed 15% s character in the M—X bond when the halogen is bonded to an atom more electropositive than the halogen by 0.25 units, recent experimental data suggest that the value of s-character might be overestimated [39]. The assumption that the π -character increases linearly with the t_{2g} "hole" population has also recently been questioned [61]. Brown et al. [61] have assumed that the number of electrons transferred

Brown et al. [61] have assumed that the number of electrons transferred to the metal orbitals per metal t_{2g} vacancy in the hexachlorometallates(IV) is inversely proportional to the difference in the optical electronegativities of the central metal ion and chlorine. Based on the value of 5.4% π -character in the M—X bond of potassium hexachloroiridate(IV) [96—99], the value of π -charge transferred to the metal ion per chlorine is given by

$$\pi = 0.054 \, n \, (\Delta \chi_{\rm Ir} / \Delta \chi_{\rm M}) \tag{29}$$

where $\Delta \chi_{\rm M} = \chi_{\rm M}^{\rm opt} - \chi_{\rm Cl}^{\rm opt}$. Here $\chi_{\rm M}^{\rm opt}$ is the optical electronegativity of the metal M and n is the number of vacancies in the $t_{\rm 2g}$ orbitals of M. Thus, the π -character of M—X bonds in the complex species $[{\rm PtCl}_6]^{2-}$, $[{\rm IrCl}_6]^{2-}$, $[{\rm OsCl}_6]^{2-}$, $[{\rm ReCl}_6]^{2-}$ and $[{\rm WCl}_6]^{2-}$ has been calculated to be 0, 5.4, 8.1, 9.7 and 10%, respectively. The σ -character of the M—X bond has then been calculated using the equation

$$e^{2}Qq = [0.85 \sigma - (\pi/2)]e^{2}Qq_{\text{atom}}$$
(30)

Estimation of π -character in these complexes by Brown et al. [61] is expected [72] to provide better results than that by Ikeda et al. [53], as Brown et al. have based their analysis on optical electronegativity [100] which depends on the transfer of electrons localized in the $p\pi$ orbitals of ligands to the $d\pi$ orbitals of central atoms.

A correlation between optical electronegativity of the central metal atom and halogen nuclear quadrupole coupling constants of hexahalometallates(IV) of the second row transition metal ions has been shown to exist by Machmer [62,63]. The quadrupole coupling constant is related to the electronegativity of the central metal ion by eqn. (31)

$$\chi_{\rm M}^{\rm opt} = C + \left(\frac{e^2 Qq}{h}\right)^{1/2} \tag{31}$$

where C is a constant equal to 0.38 for ³⁵Cl and 0.134 for ⁷⁹Br resonances. The values of electronegativity thus obtained are very similar to the optical electronegativity values obtained from electronic absorption spectral data [100]. But Brown et al. [61] have shown that the above relation breaks down completely when hexahalometallates of the same metal ion, such as tungsten, in different oxidation states are considered. A linear relationship between the NQR frequencies and optical electronegativities of the central metal ions has been reported by Cresswell et al. [64]. A plot of optical electronegativity against ³⁵Cl NQR frequency (Fig. 3) gives two straight lines, one for the second row transition metals and the other for the third row transition metals. It has also been shown [64] that the chlorine quad-

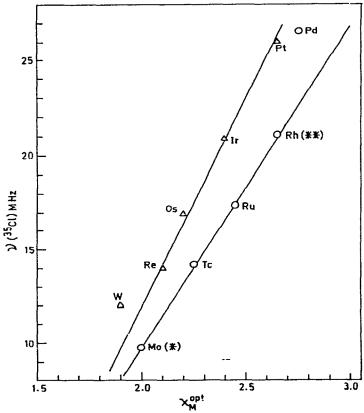


Fig. 3. Correlation between optical electronegativity of the central metal ion and ^{35}Cl NQR frequencies in K_2MCl_6 . Λ = resonances at 77 K; ρ = resonances at 300 K; * = average of 3 resonances; ** = calculated approximately from the resonance for Cs_2RhCl_6 .

rupole coupling constant decreases on going from the second to the third row transition metal hexachloro complexes. However, calculation of π-character based on optical electronegativity differences using eqn. (29) shows that the π-character is greater for the second row transition metal—halogen bonds [64]. (π-character of M—X in Ir^{VI}, Os^{IV} and Re^{IV} is 0.054, 0.081 and 0.097 respectively; for Rh^{IV}, Ru^{IV}, and Tc^{IV} the corresponding values are 0.093, 0.118 and 0.130.)

b. Effect of cations on the NQR frequency of hexahalometallates. The NQR frequency of halogens in various hexahalometallates with the same anion but different cations increases with increase in size of the cation (Table 2). The variation of NQR frequency upon changing the cation has been attributed to (i) electrostatic contributions to the EFG [65–67], (ii) changes in the electronic structure of the $[MX_6]^{n-}$ ion [52,68], (iii) anion—cation covalency

TABLE 2 Chlorine-35, bromine-79, bromine-81 and iodine-127 NQR frequencies in hexahalometallates

$K_2S_eCl_6$ $K_2T_eCl_6$	25		(sHM)	
	35Cl	77	20.576	47
	35Cl	298	15.13, 14.99	69
Rb ₂ TeCl ₆	35Cl	298	15.14	69
Cs ₂ TeCl ₆	35Cl	298	15.60	61,68,69
(NH ₄) ₂ TeCl ₆	35Cl	298	14.98	44,61,68
(CH ₃ NH ₃) ₂ TeCl ₆	35Cl	298	15.52	69
(CH ₃) ₄ N ₂ TeCl ₆	35Cl	298	16.29	59,69
$[(C_2H_5)_2NH_2]_2$ TeCl ₆	35Cl	29 8	15.91	69
$[(C_2H_5)_3NH]_2$ TeCl ₆	35Cl	298	15.48	69
(PyH) ₂ TeCl ₆	35Cl	298	16.49	69
(4-PiCH) ₂ TeCl ₆	35Cl	298	16.68	69
(4-ClPyH) ₂ TeCl ₆	35Cl	298	16.66, 16.37,	69
, = === 3 == /2 == == 0			15.56	
(2,6-LutH) ₂ TeCl ₆	35Cl	298	16.54	69
MgTeCl ₆ · 6H ₂ O	35Cl	298	15.55	69
(I ₂ Cl)SbCl ₆	35Cl	R.T.	20.778, 21.011,	270
	0.	10. 2.	24.829, 25.689	
(PCl ₄)SbCl ₆	35Cl	77	22.80, 23.02	109, 272
(C ₂ H ₅) ₄ N SbCl ₆	35 CI	 77	24.01, 24.21,	109
.(02113)411100016	0.	• •	24.67, 24.86	
NOSbCl ₆	35Cl	77	22.35, 22.97,	109
		• •	23.15, 23.37,	
			25.03, 25.48	
$[(CH_3)_4N]_2GeCl_6$	35Cl	298	19.61	59
Rb ₂ GeCl ₆	³⁵ Cl	298	18.87	114
K ₂ SnCl ₆	35Cl	77	15.73	51,61,65
Rb ₂ SnCl ₆	35Cl	77	15.63	51,61,65
Cs ₂ SnCl ₆	35CI	300	16.057	61,65,68
NH ₄) ₂ SnCl ₆	35Cl	77	15.61, 15.65	51,56,61,65
ND ₄) ₂ SnCl ₆	35Cl	273	15.477	56
CH ₃ NH ₃) ₂ SnCl ₆	35CI	296	15.811	65
(CH ₃) ₃ NH] ₂ SnCl ₆	35Cl	296	16.635	65
$(C_2H_5)_3NH]_2SnCl_6$	35Cl	298	14.94	69
(CH ₃) ₄ N ₂ SnCl ₆	35Cl	296	16.663	65
PyH) ₂ SnCl ₆	35Cl	298	17.37	69
2,6-LutH) ₂ SnCl ₆	35CI	298	17.02	69
4-PiCH) ₂ SnCl ₆	35Cl	298	17.81	69
4-CiPyH) ₂ SnCl ₆	35 Cl	298	17.52, 17.32,	69
1 0.1 3 11/2011 0.16	0.		14.97	
MgSnCl ₆ · 6H ₂ O	35Cl	300	15.836	60,65
CaSnCl ₆ \cdot 6H ₂ O	³⁵Cl	300	15.904	60
$MnSnCl_6 \cdot 6H_2O$	35Cl	300	15.770	60
CoSnCl ₆ · 6H ₂ O	35Cl	296	15.752	65
	35Cl	300	15.716, 15.719	60,65
NiSnCl ₆ · 6H ₂ O ZnSnCl ₆ · 6H ₂ O	35Cl	300	15.720, 15.763	60,65

TABLE 2 (continued)

17.50 69 15.39 69 18.54 69 19.44, 19.30 69	,61
17.26 51 17.50 69 15.39 69 18.54 69 19.44, 19.30 69	.,61
17.50 69 15.39 69 18.54 69 19.44, 19.30 69))
15.39 69 18.54 69 19.44, 19.30 69)
18.54 69 19.44, 19.30 69)
19.44, 19.30 69	
•	١
19.87, 19.63, 69	f
	ı
18.58	
	1
	,82
27.04	
	,46,61,
	,82
	,81
	,61,68,
_	
	•
	:
	,61,82
•	
	94
	,61,68,
10.040 04	
	18.58 18.75 18.75 19.53 26.75 43 25.73, 26.47, 27.04 26.021 44 26.021 44 26.282 26.70 52 26.55 46 25.870 25.815 25.837 25.815 25.789 25.524, 25.788, 26.097 25.810 25.823 26.698 21.859 48 21.859 48 21.859 49 418.292, 18.497, 19.463 17.618 419.463 17.618 48 16.754, 16.939, 17.505, 18.109, 18.251, 18.800 16.639, 17.690, 17.845, 18.435 17.526, 17.758, 64 18.038 17.345 64

TABLE 2 (continued)

Compound a	Nucleus	Temperature b (°K)	NQR frequency (MHz)	Ref.
Cs ₂ MnCl ₆	35Cl	77	19.539	64
K ₂ TeCl ₆	35Cl	77	14.148	64,94
K ₂ ReCl ₆	35Cl	77	13.986, 13.966	50,53,61, 68,75
Rb₂ReCl ₆	35Cl	77	14.248	54
Cs2ReCl6	35Cl	77	14.604	54,61,68
(NH ₄) ₂ ReCl ₆	³⁵ Cl	77	14.125	54
K₂MoCl ₆	35Cl	300	9.541, 9.795, 9.876	68
Cs ₂ MoCl ₆	35 C l	300	10.732	61,68
K ₃ MoCl ₆	35 CI	300	9.83, 8.54	61
KWCl ₆	35 Cl	300	11.455, 11.335	61,68
RbWCl ₆	³'Cl	300	11.546, 11.320	61,68
CsWCl ₆	35Cl	300	11.748, 11.605,	61,68
			11.281	
K₂WCl ₆	35Cl	300	10.195	53,61,68
Rb ₂ WCl ₆	35Cl	300	10.575	61,68
Cs ₂ WCl ₆	35Cl	300	10.913	61,68
Cs ₂ NbCl ₆	35Cl	300	8.589, 9.245	61,68
Cs₂TaCl ₆	³⁵ Cl	300	9.127, 8.803	61,68
K₂SeBr ₆	⁷⁹ Br	77	173.599, 173.285, 172.389	47
Cs ₂ SeBr ₆	⁷⁹ Br	77	177.44	47
(NH ₄) ₂ SeBr ₆	⁷⁹ Br	77	172.623	47
K₂TeBr ₆	⁷⁹ Br	77	135.946, 135.670, 134.496	44
Cs ₂ TeBr ₆	⁷⁹ Br	77	135.962	44
$(NH_4)_2$ TeBr ₆	79 Br	77	135.062, 143.258,	44
(14114)216116		2 4	129.946	44
[(CH ₃) ₄ N] ₂ TeBr ₆	⁷⁹ Br	77	142.58	44
$[(C_2H_5)_2NH_2]_3SbBr_6$	79Br	298	126.19	92
$[(C_2H_5)_2NH_2]_3BiBr_6$	⁷⁹ Br	298	87.38	92
K ₂ SnBr ₆	79Br	77	130.53, 129.17, 132.00	45
Rb ₂ SnBr ₆	⁷⁹ Br	77	128.91	51
(NH ₄) ₂ SnBr ₆	⁷⁹ Br	296	126.53	45
Cs ₂ SnBr ₆	⁸¹ Br	300	110.01	61,68
K ₂ PdBr ₆	⁷⁹ Br	77	205.43	43
K ₂ PtBr ₆	⁷⁹ Br	77	204.11, 202.25	42,61,68
$H_2PtBr_6 \cdot 9H_2O$	⁷⁹ Br	292.8	201.52	52
$Na_2PtBr_6 \cdot 6H_2O$	⁷⁹ Br	77	207.44	52
Rb ₂ PtBr ₆	⁷⁹ Br	77	205.63	52
Cs_2PtBr_6	⁷⁹ Br	77	208.32	52,61,68
(NH ₄) ₂ PtBr ₆	⁷⁹ Br	77	203.983	52,61
K ₂ OsBr ₆	81 Br	300	111.78	61,68
Cs ₂ OsBr ₆	81 Br	300	116.83	61,68
(NH ₄) ₂ OsBr ₆	⁸¹ Br ⁷⁹ Br	300	112.78	61
K ₂ ReBr ₆		77	115.09, 115.86,	50,53,68

TABLE 2 (continued)

Compound ^a	Nucleus	Temperature b (°K)	NQR frequency (MHz)	Ref.
$\mathrm{Rb}_2\mathrm{ReBr}_6$	⁷⁹ Br	77	115.73	54
Cs ₂ ReBr ₆	79Br	77	118.41	54
(NH ₄) ₂ ReBr ₆	⁷⁹ Br	77	113.95	54
Cs ₂ WBr ₆	81 Br	300	75.28	61,68
K₂TeI ₆	1271	77	$v_1 = 154.250,$ $154.095,$ 151.878	44
			$v_2 = 307.353,$ $300.603,$ 303.230	
Rb₂TeI ₆	127[77	$v_1 = 153.903,$ $153.240,$ 151.995	52
			$ \nu_2 = 306.619, \\ 305.636, \\ 303.688 $	
Cs₂TeI ₆	127I	77	$v_1 = 154.140$	44
NH ₄) ₂ TeI ₆	127 _I	77	$ \nu_2 = 308.288 \nu_1 = 153.831, $	44
			$152.165,$ 148.173 $v_2 = 306.192,$ $302.335,$ 295.123	
Rb ₂ SnI ₆	127	77	$\nu_1 = 132.57$	51
K ₂ PtI ₆	1271	77	$v_1 = 204.68,$ $203.70,$ 202.60 $v_2 = 408.28,$	42
			407.18, 405.02	
Rb ₂ PtI ₆	1271	77	$v_1 = 205.33$ $v_2 = 410.66$	51
$(NH_4)_2 PtI_6$	127 _I	77	$ \nu_1 = 205.69, \\ 205.48 $	51
K₂ReI ₆	127]	77	$ \nu_1 = 122.92, \\ 123.73, \\ 124.58 $	50,53
			$ u_2 = 245.52, \\ 246.55, \\ 247.45 $	
Rb ₂ ReI ₆	127I	77	$\nu_1 = 122.8, 122.4$	54
Cs ₂ ReI ₆	127 _I	77	$v_2 = 244.8$ $v_1 = 124.49$	54

TABLE 2 (continued)

Compound a	Nucleus	Temperature ^b (°K)	NQR frequency (MHz)	Ref.
(NH ₄) ₂ ReI ₆	127 _I	77	$v_1 = 122.62,$	54
472			122.10,	
			119.73	
			$\nu_2 = 242.03,$	
			241.03,	
			239.42	

^a Abbreviations: PyH = pyridinium ion; 4-PiCH = 4-picolinium ion; 4-ClPyH = 4-chloropyridinium ion; 2,6-LutH = 2,6-lutidinium ion.

b R.T. = Room temperature.

[65,95], and (iv) changes in the M-X bending vibrations [52].

Calculations, using the point charge model, on the complexes K₂PtCl₆ and Cs₂PtCl₆ have shown [52] that the direct electrostatic effect of the charges of other ions on the EFG at the chlorine nucleus under observation is insignificant. The EFG is supposed to originate largely from the charge distribution within the complex anion whose electronic structure is affected by the surrounding cations. Similar results have been obtained [54] for the complexes A₂ReCl₆ where A = K⁺, NH₄⁺, Rb⁺ and Cs⁺. The changes in the charge distribution in the anion may be attributed to (i) the polarization of the complex ion by the electrostatic field from neighbouring ions and (ii) the suppression of bending vibrations of the M-X bonds [52]. Ikeda et al. [54] have shown that the introduction of Sternheimer antishielding effect [41] in the calculation of EFG due to external ions (point charge model) accounts for the large indirect effect, at least with respect to the sign and the order of magnitude of qind. relative to $q_{\rm dir.}$. Smith and Stoessiger [66] have shown that the introduction of Sternheimer antishielding factor, as well as the effect of multipoles on the EFG at the halogen into the point charge model calculations, largely accounts for the observed difference in frequencies (but see ref. 81).

Brill et al. [65] have performed point charge model calculations to evaluate the EFG at the chlorine nuclei due to external ions for certain hexachlorostannates(IV) such as K_2SnCl_6 , Rb_2SnCl_6 and Cs_2SnCl_6 . Their results show that a simple point charge model does not account for the difference in frequencies of these three salts. However, introduction of the effect of anion—cation covalency involving the overlap of the cation p-orbitals with the chlorine s and p orbitals, to the $q_{lattice}$ accounts for the differences in the resonance frequencies [65,95]. Further, the overlap integrals for the three salts mentioned above show a trend which may be related to the resonance frequencies [65]. In salts of the type $A(H_2O)_6SnCl_6$, the variation of EFG at the chlorine site could be interpreted in terms of point charge model [65].

Brown and Kent [68] have observed in a series of hexahalometallates (including WCl₆, Cs₂WCl₆, K₂ReCl₆, Cs₂SnCl₆, K₂OsCl₆, K₂PtCl₆, Cs₂PtCl₆ and the corresponding bromides) that the ratio of the ³⁵Cl NQR frequency to the corresponding ⁸¹Br NQR frequency is very close to the ratio of their nuclear quadrupole coupling constants (Fig. 4), even though the Sternheimer antishielding factor γ_{∞} for Br⁻ is twice as large as that for Cl⁻. This is taken as indicative of the fact that the field gradients due to lattice charge distribution do not contribute significantly to the halogen coupling constant. This led Brown and Kent [68] to suggest that the variation in frequency due to changes in cation is mainly due to covalency changes within the complex anion.

Brill et al. [65,67,69-71] have studied the effect of cations on the halogen NQR in a number of hexahalometallates. They have observed [70] that in a series of [SnCl₆]²⁻ salts, the resonance frequencies do not correlate well

Fig. 4. Plot of 35 Cl NQR frequencies in hexahalometallates versus 79 Br (A) and 81 Br (B) NQR frequencies in the corresponding bromo complexes. Resonances at 77 K have been used for (A) and those at 300 K have been used for (B) (ref. 68). 1. WX₆; 2. Cs₂WX₆; 3. K₂ReX₆; 4. Cs₂SnX₆; 5. K₂OsX₆; 6. K₂PtX₆; 7. Cs₂PtX₆; 8. K₂ReX₆; 9. (NH₄)₂ReX₆; 10. Rb₂ReX₆; 11. Cs₂ReX₆; 12. (NH₄)₂SnX₆; 13. Rb₂SnX₆; 14. K₂SnX₆; 15. K₂SeX₆; 16. K₂PtX₆; 17. (NH₄)₂PtX₆; 18. Na₂PtX₆ · 6H₂O; 19. Rb₂PtX₆; 20. K₂PdX₆; 21. Cs₂PtX₆.

with the Sn—Cl bond lengths, but correlate with the cation size (cation—anion contact distance) and the anion—anion contact distance. The ³⁵Cl NQR frequency in the [SnCl₆]²⁻ salts is shown to be very sensitive to the anion—anion contact distance. The sensitivity gradually drops with the increase in separation of the anions till a limiting value is reached. After this value is reached, the changes in lattice dimensions do not produce any appreciable change in the NQR frequency [70]. Further, the repulsive potential between ions in [SnCl₆]²⁻ salts closely follows the NQR frequency trend and may be a dominant factor in determining NQR frequencies [70,71]. An increase in the repulsive potential decreases the polarization of the halogen atoms, and hence the Sternheimer antishielding effect is suppressed [68,70,71,101]. This leads to the experimental observation that the electric field gradient decreases with increasing repulsive forces between the ions [70,71].

c. Effect of temperature on the halogen NQR frequencies in hexahalometallates [72]. One of the simplest applications of NQR is the study of phase transitions taking place in solids (Table 3). Many hexahalometallates of the type A_2MX_6 exhibit a cubic antifluorite structure at room temperature. As the temperature is decreased, some of these compounds have been observed to undergo structural phase transformations to lower symmetry forms. For example, the phase transition observed at 111 K for K₂ReCl₆ has been shown by O'Leary and Wheeler [73,74] as due to a change from cubic to tetragonal structure. The [MX₆]²⁻ ions have been taken to be rigid octahedral structures situated within cages defined by A ions. At the phase transition, the cage dimensions change and the octahedra reorient themselves to the principal axis of the cage, but the octahedra themselves remain unaltered. The angle of rotation of the octahedron is taken as the order parameter and the observed changes in the NQR frequencies are associated with the change in the order parameter. The phase transition may be caused by the condensation of a particular normal mode of the phonon in the cubic phase whose eigenvector corresponds to atomic displacements in the structure stabilized below the transition temperature [74,75]. Recent advances in the understanding of phase transitions in K₂PtBr₆, K₂ReCl₆ and K₂OsCl₆, as revealed by NQR data, have been reviewed by Armstrong [75].

Armstrong and co-workers [75–90] have analysed the temperature dependence of halogen NQR frequencies in a number of hexahalometallates containing [SnCl₆]²⁻ [76], [PtCl₆]²⁻ [77–82], [PtBr₆]²⁻ [83,84], [PdCl₆]²⁻ [79,80,82], [IrCl₆]²⁻ [85,86], [OsCl₆]²⁻ [87,90] and [ReCl₆]²⁻ [88]. The pressure dependence of the NQR frequency in a few of these complexes, as well as spin lattice and spin—spin relaxation measurements, have also been reported by Armstrong and co-workers [78,81,85,87–89].

The temperature dependence of the 35 Cl NQR frequency in K_2 PtCl₆ and K_2 PdCl₆ has been analysed using Bayer's equation [77,79]. It has been shown [79] that a single low frequency vibrational mode (\sim 42 cm⁻¹ for K_2 PtCl₆ and \sim 32 cm⁻¹ for K_2 PdCl₆) dominates the motional averaging of the electric

TABLE 3

Phase transitions observed by halogen NQR in hexahalometallates

Complex	Transition temperature	Ref.
K ₂ SeBr ₆ K ₂ TeBr ₆	-33, -52, -64 -40	47 44
(NH ₄) ₂ TeBr ₆ a Rb ₂ TeI ₆	-52 -40, -16, +55	44 52
K ₂ SnCl ₆ (NH ₄) ₂ SnCl ₆ b	-17, -8.5 ca85	56 56
$(ND_4)_2SnCl_6^b$	ca. 10	56 56
K ₂ SnBr ₆ (NH ₄) ₂ SnBr ₆	98, 123 129,116 c	56
$(NH_4)_2$ PtCl ₆ b CuPtCl ₆ · 4H ₂ O	-136	52 58
K_2PtBr_6 $(NH_4)_2PtBr_6$	-104, -130, -136, -168, -195 0-1 ^b , -215	84,75 52,83
K ₂ RhCl ₆ · H ₂ O K ₂ IrCl ₆	c (<-30) c (<0,>-51,<-51)	64 64
K ₂ ReCl ₆ K ₂ ReBr ₆	-199, -170, -162 -4, -16, -27	74 50,53
K ₂ ReI ₆	ca. 166	53 53
$(NH_4)_2ReI_6$ Rb_2ReI_6	ca. 46 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	54
Cs ₂ ReI ₆	c	54

^a Another transition is expected to exist between -8.5°C and -196°C.

field gradient at the chlorine site. This mode has been identified as the rotary F_{1g} mode which corresponds to torsional oscillations of the $[PtCl_6]^{2-}$ and [PdCl₆]²⁻ ions about their axes of symmetry. However, stimulated by a suggestion by O'Leary [74], that rotary modes and internal bending modes may be important in the averaging process, Armstrong et al. [80,81] have shown that a multiple mode analysis of the 35Cl NQR data for K2PtCl6 and K₂PdCl₆ based on the Bayer-Kushida model provides a convincing explanation of the motional averaging of the electric field gradient at the chlorine sites. Thus, using the multiple mode analysis, Armstrong et al. [80] have calculated the torsional oscillation frequencies ~58 cm⁻¹ and ~64 cm⁻¹ for K₂PtCl₆ and K₂PdCl₆ respectively. In carrying out the multiple mode analysis, two important assumptions have been made: (i) that bond stretching motions internal to the [MX₆]²⁻ ion are of negligible importance relative to bond bending motions as a means of averaging the field gradient and for the destruction of π -bonding, and (ii) that $(\partial \nu/\partial T)_p = (\partial \nu/\partial T)_v$, which is reasonably valid for compounds having no π -character in the M-X bond [75]. Baker and Armstrong

^b Rotational transition of (NH₄)⁺ and (ND)⁺ ions.

^c Transition point has not been observed definitely, but the range of temperature in which transition is expected is indicated.

[85] extended the multiple mode analysis to include the effect of the destruction of π -bonding [53] in K_2IrCl_6 by the lattice vibrations.

The temperature coefficient $(\partial \nu/\partial T)_p$, of the halogen NQR frequency is usually negative due to the Bayer effect [26]. For the hexahalometallates generally, $(\partial \nu/\partial T)_p$ increases with the decrease in size of the cation and increasing temperature (Table 4). Compounds such as $(NH_4)_2PtCl_6$, $(NH_4)_2PtBr_6$, [52], $(NH_4)_2SnCl_6$ and $(ND_4)_2SnCl_6$ [56] show a deviation from this trend, and exhibit a second order phase transition, attributed to the rotation of NH_4^+ and ND_4^+ ions in the crystal lattice [52,56]. It has been observed that the NQR frequency of $(ND_4)_2SnCl_6$ is always higher than that of $(NH_4)_2SnCl_6$ at a given temperature. Further, the phase transition for $(ND_4)_2SnCl_6$ occurs at a higher temperature (283 K) than for $(NH_4)_2SnCl_6$ (188 K). These results have been presumed to be due to the secondary hydrogen isotope effect. Since deuterium atoms undergo tunnelling less readily than hydrogen atoms in the ammonium ion, it has been presumed [56] that the averaging of EFG takes place to a smaller extent in the ND_4^+ compound resulting in a higher resonance frequency at a particular temperature.

The temperature coefficient of the NQR of hexahalc metallates of the transition elements increases progressively with increasing vacancy in the t_{2g} orbitals of the central metal ion (Table 4). The temperature coefficient becomes positive for K_2ReCl_6 and K_2WCl_6 in the K_2MX_6 series. This progressive increase in $(\partial \nu/\partial T)_p$ with t_{2g} vacancy has been attributed by Ikeda et al. [53] to the π -character in the M-X bond. A more quantitative treatment relating the π -character of the M-X bond to the observed $(\partial \nu/\partial T)_p$ values has been presented by Hass and Marram [91]. According to them, an increase in temperature will result in exciting the M-X bending vibrations. This in turn, will

TABLE 4
Temperature coefficients of ³⁵Cl NQR frequencies for some hexachlorometallates(IV) ^a

Complex	Cation radius (Å)	Electronic configura- tion	Temperature range (°K)	(∂ν]∂T) _p (kHz/°K)	Ref.
K ₂ PtCl ₆	1.33	d ⁶	77-196	-0.92	52
K2IrCl6	1.33	d ⁵	204-297	-0.54	53
K ₂ OsCl ₆	1.33	d^4	203-299	-0.22	53
K ₂ ReCl ₆	1.33	d^3	197-294	+0.13	53
K ₂ WCl ₆	1.33	d^2	283-308	+0.44	53
Rb ₂ PtCl ₆	1.48	d^6	77-196	0.59	52
Cs2PtCl6	1.69	d^6	77-196	0.33	52
Cs2RhCl6	1.69	d ⁵	~298	-0.50	64
K2RuCL6	1.33	d^4	~298	-0.04	64
K ₂ TcCl ₆	1.33	d³	~298	+0.15	64

 $^{^{}a}$ $(\partial v/\partial T)_{p}$ data for a number of hexahalometallates have been reported by Brown and Kent [68].

result in the decrease in the overlap of the halogen p_x and p_y orbitals with the metal t_{2g} orbitals, thereby increasing the electronic population in the p_x and p_y orbitals of the halogen atoms. This leads to an increase in the coupling constant (eqn. 18). Comparison of the $(\partial \nu/\partial T)_p$ data for the hexahalometallates of second and third row transition elements (Table 4) indicates that the M-X π -bonding is greater for the second row transition metals, especially with the electronic configuration d^3 and d^4 [94].

Brown and Kent [68] have suggested that the positive $(\partial \nu/\partial T)_p$ in some of the paramagnetic complexes is due to the M-X stretching mode rather than the M-X bending mode. If there is a greater decrease in the metalhalogen orbital overlaps in the π -system than in the σ -system upon stretching the M-X bond, the relative loss in the π -bond order is amplified by the concommitant increase in the σ -covalancy [61,68]. Thus the coupling constant of halogen, which depends upon the difference in σ - and π -orbital population (eqns. 20–22), might increase markedly with vibrational excitation of the stretching mode.

Another explanation for the observed positive $(\partial \nu/\partial T)_p$ has been given by O'Leary [74]. According to him, the positive temperature coefficient in K_2 -ReCl₆ is due to the soft librational mode which is highly temperature dependent above the highest crystallographic phase transition of K_2 ReCl₆. He rules out the π -bonding theory on the basis of observed negative $(\partial \nu/\partial T)_p$ in K_2 ReCl₆ below the transition temperature 110.9 K. If the π -bonding were the cause of the anomalous behaviour, one would expect a positive $(\partial \nu/\partial T)_p$ even at low temperatures. O'Leary has further pointed out that an alternative explanation [28] that the EFG might itself increase with increasing volume so as to produce a positive $(\partial \nu/\partial T)_p$ may not be applicable in the case of hexahalometallates.

A number of factors other than π -bonding, expansion of volume and temperature dependence of soft librational modes also have to be considered in explaining the $(\partial \nu/\partial T)_p$ data. For example, Ikeda et al. [54] have observed a negative $(\partial \nu/\partial T)_p$ for the ³⁵Cl NQR frequency in the compound (NH₄)₂-ReCl₆, even though the corresponding potassium salt exhibits a positive $(\partial \nu/\partial T)_p$ above the transition point (110.9 K). It has been suggested [54] that hydrogen bonding or some electrostatic interaction between hydrogen and chlorine atoms is responsible for the observed negative $(\partial \nu/\partial T)_p$ in (NH₄)₂ReCl₆. The normal negative $(\partial \nu/\partial T)_p$ is not followed by the ⁷⁹Br resonances in $[(C_2H_5)_2NH_2]_3[SbBr_6]$ and $[(C_2H_5)_2NH_2]_3[BiBr_6]$. An inversion of sign of $(\partial \nu/\partial T)_p$ has been observed in both these complexes. Brill and Long [92] have interpreted this observation as due to the effect of phase transition on the NQR frequency. However, similar results for the ³⁵Cl resonances in Mg(H₂O)₆[SnCl₆] and Ca(H₂O)₆[SnCl₆] have been attributed [60] to the presence of Sn—Cl π -bonding in these complexes.

The ³⁵Cl NQR frequencies for some hexahydrates of hexachloroplatinates-(IV) such as BaPtCl₆ · $6H_2O$, CuPtCl₆ · $6H_2O$ etc., show low values of $(\partial \nu/\partial T)_p$ (0.23–0.33 kHz deg⁻¹) which are much smaller than the value (0.95 kHz deg⁻¹) for K₂PtCl₆. It has been suggested [58] that torsional oscillations of [PtCl₆]²⁻ octahedra are strongly hindered in these crystals. Broad line NMR spectra of these complexes suggest [58] that water molecules in these crystals do not have any freedom of rotation. Hence, it might be that the hydrogen bond formation between chlorine atoms and water molecules is responsible for the small $(\partial \nu/\partial T)_p$ [58].

Lindop [93] has studied the ³⁵Cl NQR in K₂IrCl₆ as a function of temper-

Lindop [93] has studied the ³⁵Cl NQR in K₂IrCl₆ as a function of temperature and magnetic field. The compound exhibits a single resonance above the Neel point (3.05 K) and seven resonances below this point. The result has been interpreted in terms of hyperfine interaction at each of the chlorine nuclei in [IrCl₆]²⁻ ion.

2. Tetrahalometallates

Compared to the number of hexahalometallates studied by NQR, studies on tetrahalometallates are very few (Table 5). The NQR of the first compound of this series, K₂HgI₄, was reported by Nakamura et al. in 1959 [102]. Other tetrahalomercurates studied by NQR include K₂HgCl₄ · 2H₂O, (PyH)₂-HgCl₄ [103] and Cs₂HgI₄ [104].

The resonance frequencies of tetrahaloplatinate(II) and tetrahalopalladate(II), where the central metal ions have a d^8 configuration, are considerably lower than those of the corresponding hexahalocomplexes of these metals in their higher oxidation state (IV) [43,105]. Analysis of the NQR data using the Townes-Dailey approach indicates that the covalency of the M-X bond in the hexahalometallate(IV) is larger than that in the tetrahalometallate(II) of the same central metal ion [43]. As the metal becomes increasingly electronegative in the order Ni^{II} < Pd^{II} < Pt^{II}, the covalency of the M-X bond has been found to increase in this order in compounds of the type A_2MX_4 . Even though the expected order has been observed when the cation is the same [43], deviations have been observed when compounds containing different cations are considered [106]. This may indicate the importance of q_{lattice} in these compounds [106].

Compounds containing the [AlCl₄]⁻ ion have been studied widely [107—112]. Merryman et al. [107] have shown that the observation of one, two, four or some multiplet of four resonances within a range of 1 MHz about an average of 10.6 to 11.3 MHz is an indication of the presence of a salt-like compound A[†][AlCl₄]⁻. Observation of resonances at higher frequencies, with a wider range will mean either the presence of [Al₂Cl₇]⁻ (or [Al₃Cl₁₀]⁻) anions or [AlCl₄]⁻ ions which are strongly bound to the cation [107]. In compounds containing [Al₂Cl₇]⁻ (or [Al₃Cl₁₀]⁻) ions which show resonances in a wider range of frequencies (10—13 MHz), the higher frequency resonances have been attributed to the terminal chlorines while those occurring at lower frequencies have been assigned to the bridging chlorines [107].

Okuda et al. [112] have observed the halogen NQR and the Zeeman effect on the resonances in $AlX_3 \cdot SbX_3$ (X = Br or I) and $AlBr_3 \cdot BiBr_3$. The former adducts have been shown to consist of $[AlX_4]^-$ and $[SbX_2]^+$ ions with a weak

TABLE 5
Halogen NQR frequencies in tetrahalometallates

Compound	Nucleus	Temperature ^a (°K)	ν (MHz)	Ref.
$Na_2ZnCl_4 \cdot 3H_2O$	³⁵ Cl	298	7.680, 9.150	121
Cs ₂ ZnCl ₄	³⁵ Cl	77	8.893, 9.175, 9.628	121
(PyH) ₂ ZnCl ₄	³⁵ Cl	298	8.890, 9.477	121
$(N_2H_5)_2$ ZnCl ₄	35Cl	298	7.854, 8.596, 9.117, 9.900	121
K ₂ HgCl ₄ · H ₂ O	³⁵ Cl	298	16.24	103
(PyH) ₂ HgCl ₄	³⁵ Cl	29 8	11.99, 14.25, 15.72	103
Cs ₂ CuCl ₄	³⁵ Cl	77	10.484, 10.593, 10.856	121
(CH ₃ NH ₃) ₂ CuCl ₄	³⁵ Cl	77	10.78, 12.157	116
(C ₂ H ₅ NH ₃) ₂ CuCl ₄	35Cl	77	10.817, 12.074	116
(C ₃ H ₇ NH ₃) ₂ CuCl ₄	³⁵ Cl	298	11.315, 11.645	116
(enH ₂)CuCl ₄	³⁵ Cl	77	10.271, 11.901	116
NaAuCl ₄ · 2H ₂ O	35Cl	77	25.356, 27.998,	106,122,
			28.867, 29.466	123
KAuCl ₄	³⁵ Cl	77	27.320, 27.598 27.907, 28.214	122
KAuCl ₄ · 2H ₂ O	35Cl	77	27.137, 28.183	122
(NH ₄)AuCl ₄	35Cl	77	27.300, 28.130	122
$(NH_4)AuCl_4 \cdot 2/3 H_2O$	³⁵ Cl	293	26.617, 26.979, 27.431, 27.627	122
RbAuCl ₄	³⁵ Cl	77	27.651, 28.319	122
CsAuCl ₄	35Cl	77	28.419, 27.800	122
[N(CH ₃) ₄] ₂ NiCl ₄	³⁵ Cl	273	8.85, 9.05, 9.2— 9.4	106
$[N(C_2H_5)_4]_2NiCl_4$	³⁵ Cl	-	8.95, 8.64 (77 K), 8.96, 9.45 (220 K)	106
(CH ₃ NH ₃) ₂ MnCl ₄	³⁵ Cl	R.T.	7.711, 4.564	120
(PyH) ₂ PdCl ₄	35 Cl	273	17.97	43
K ₂ PtCl ₄	35Cl	273	17.93	138,105
$[N(CH_3)_4]_2$ PtCl ₄	35Cl	273	18.38, 19.16	138
(PyH) ₂ PtCl ₄	35 Cl	273	18.41, 18.60	138
Na AlCl ₄	³⁵ Cl	R.T.	11.009, 11.272, 11.385, 11.583	107
Te ₄ (AlCl ₄) ₂	35Cl	R.T.	10.201, 11.138	107
ICl ₂ AsCl ₄	35Cl	R.T.	10.802, 10.843, 11.297, 11.413	107
Bi ₅ (AlCl ₄) ₃	35Cl	R.T.	10.479, 10.779	107
GaAlCl ₄	³⁵ Cl	R.T.	10.813, 11.115, 12.491, 12.959	107
Hg ₃ (AlCl ₄) ₂	³⁵ Cl	R.T.	10.417, 10.676, 10.812, 11.383, 11.433, 11.843, 12.568, 12.597	107

TABLE 5 (continued)

148

Compound	Nucleus	Temperature ^a (°K)	ν (MHz)	Ref.
Co(AlCl ₄) ₂	³⁵ Cl	R.T.	10.813, 11.115, 12.491, 12.959	107
SCl ₃ AlCl ₄	35Cl	R.T.	9.91, 10.18, 10.46, 11.04	107
$[P(C_6H_5)_4]AlCl_4$	35Cl	R.T.	11.23	111
CsGaCl ₄	35 Cl	77	15.456, 15.468, 15.485, 15.524, 16.325, 16.604, 16.755, 16.958	114
NaGaCl4	35Cl	77	16.118, 16.370, 16.825, 16.961	114
RbGaCl ₄	³⁵ Cl	77	15.182, 16.001, 16.349, 16.587	114
KGaCl ₄	35Cl	77	16.483, 16.553	114
GaGaCl ₄	35Cl	77	16.072, 16.250	114
[P(C ₆ H ₅) ₄ TlCl ₄	35Cl	77	19.86	111
[As(C ₆ H ₅) ₄]TlCl ₄	35Cl	77	20.00	111
Cs ₂ ZnBr ₄	⁸¹ Br	77	59.008, 61.266, 63.240	121
Rb ₂ ZnBr ₄	⁸¹ Br	77	56.898, 62.533, 68.171	121
$(PyH)_2ZnBr_4$	⁸¹ Br	77	57.944, 59.801, 60.657, 61.182	121
NaAuBr ₄ · 2H ₂ O	⁷⁹ Br	77	201.70, 217.66, 224.48, 229.43	122
KAuBr ₄	⁷⁹ Br	77	215.88, 214.64, 219.54, 217.73	122
KAuBr ₄ · 2H ₂ O	⁷⁹ Br	77	212.75, 214.15, 217.97, 219.84	122
$NH_4AuBr_4 \cdot 2/3 H_2O$	⁷⁹ Br	77	207.03, 214.43, 215.52, 217.43	122
RbAuBr ₄	⁷⁹ Br	77	215.69, 219.53	122
CsAuBr ₄	79Br	77	216.85, 222.00	122
K ₂ PdBr ₄	79Br	300	129.34	43
K ₂ PtBr ₄	79 B r	77	139.84	43
Cs ₂ ZnI ₄	127I	77	$79.037 (\nu_1)$	121
K ₂ HgI ₄	127	293	123.46, 129.30, 148.49 (ν_1)	102
$NH_4TII_4 \cdot 2H_2O$	127[291	157.19 (ν_1) , 312.50 (ν_2)	118
NH ₄ TII ₄	127 _I	291	155.88, 153.77 (ν_1)	118
KTII ₄ · 2H ₂ O	127 I	291	$157.45 (v_1)$	118
KTII4	127 <u>1</u>	291	$154.94 (v_1)$	118
RbTlI ₄ · 2H ₂ O	127 <u>T</u>	291	157.78 (ν_1) , 313.7 (ν_2)	118
CsTlI ₄ · 2H ₂ O	127 _I	291	$157.85 (\nu_1)$	118

a R.T. ≈ Room temperature.

bonding between them through the halogens of the $[AlX_4]^-$ group. $AlBr_3 \cdot BiBr_3$ showed spectral features which are different from those of $AlX_3 \cdot SbX_3$. Poleshchuk and Maksyutin [113] have studied the compounds $AlBr_3 \cdot SbBr_3$ and $AlBr_3 \cdot BiBr_3$ by halogen, antimony and bismuth NQR.

 35 Cl, 69 Ga and 81 Br NQR spectra in a series of halogallates(III) including tetrahalogallate(III), MGaCl₄ (M = Na, K, Rb, Cs and Ga^I) have been reported by Deeg and Weiss [114]. Temperature dependence of the 35 Cl resonances in KGaCl₄ and GaGaCl₄ has shown that these compounds exhibit polymorphism. The phase transition on going from low to high temperatures in these two compounds is accompanied with the lowering of symmetry of the GaCl₄ tetrahedron and an increase in the crystal field splitting. From 35 Cl and 69 Ga NQR data, compounds of the type MGa₂Cl₇ have been assigned a bridge structure analogous to KAl₂Br₇ and Te₄(Al₂Cl₇)₂ [114]. Alymov et al. [115] have observed halogen NQR in compounds of the type Bu₄"N[GaX₄] (X = Cl, Br, I). Bu₄"N[GaI₄] has two non-equivalent [GaI₄] ions in the unit cell. The covalency character of the M—X bond in these compounds is shown to increase in the order GaCl₄ < GaBr₄ < GaI₄.

Scaife [111,117] has suggested an empirical relationship between (i) the covalent character, σ , of the M-X bond, (ii) covalent radius of the metal M, $r_{\rm M}$, and that of the halogen, $r_{\rm X}$, and (iii) the M-X bond length d:

$$d = r_{\rm M} + r_{\rm X} - 0.61 \log \sigma \tag{32}$$

Substitution of different values in eqn. (32) for both $[Tl_2Cl_9]^{3-}$ and $TlCl_3$ led to the evaluation of $r_{Tl}=1.24$ Å. This was used in the prediction of the Tl-Cl bond distance in $[TlCl_4]^-$ ($d_{Tl-Cl}=2.50$ Å), which agrees well with 2.47 Å calculated from Pauling's tetrahedral radius for Tl^{III})[117]. The small asymmetry parameter ($\eta=6.8\%$) observed for 127 I in $[TlI_4]$ ion has been attributed to the electrostatic effect of the external ions [118].

The two ³⁵Cl resonance frequencies observed [116] for compounds of the type A₂CuCl₄, (A = CH₃NH₃, CH₃CH₂NH₃, CH₃CH₂CH₂NH₃) and (NH₃CH₂CH₂NH₃)CuCl₄ have been assigned to "bridging" and non-bridging halogen atoms based on the structural data for the complex (NH₄)₂CuCl₄ [119]. The higher frequency resonance has been shown to be due to the "bridging" chlorine atoms of a [CuCl₄] unit which are long bridging to the neighbouring [CuCl₄] unit at a distance of about 2.8 Å to 2.9 Å. Similar assignments have been made for the NQR frequencies in (CH₃NH₃)₂MnCl₄ [120], based on studies involving single crystal rotation patterns in a small magnetic field of 40 G. The temperature dependence of NQR in (CH₃NH₃)₂MnCl₄ indicates a first order phase transition at 256.5 K and a second order phase transition at 393.7 K [120]. (CH₃CH₂NH₃)₂[CuCl₄] shows a phase transition at ca. 360 K [120]. Halogen NQR in [ZnX₄]²⁻ has been reported by Scaife [121].

Temperature dependence of 35 Cl NQR frequencies in Na(AuCl₄) · 2H₂O is interesting in that, of the four resonance signals ovserved, the lowest frequency line showed a positive $(\partial \nu/\partial T)_p$ while the others showed a normal negative $(\partial \nu/\partial T)_p$ [122,123]. The positive $(\partial \nu/\partial T)_p$ of the low frequency line

has been shown to be due to the hydrogen bond formation between the chlorine responsible for the signal and the water molecule [123]. This assignment has been confirmed by the temperature dependence of the NQR spectrum of the compound Na(AuCl₄) · 2D₂O which showed a still more positive $(\partial \nu/\partial T)_p$ for the lower frequency line [106]. The anhydrous compounds NaAuCl₄ and KAuCl₄ show only two frequencies which exhibit negative $(\partial \nu/\partial T)_p$ [124]. The temperature dependence of ³⁵Cl NQR in HAuCl₄ · 4H₂O (H₅O₂⁺AuCl₄ · 2H₂O) shows two phase transitions, one at 298 K and the other at 218 K. However, only one phase transition (at 252 K) was observed in DAuCl₄ · 4D₂O [125].

3. Other halometallates

Bowmaker et al. [128] have discussed the ¹²⁷I spectrum in [Ph₃MeP] Cu₂I₃ in terms of covalent character of the Cu—I bond as well as in terms of contributions from the Sternheimer antishielding effect.

Bowmaker et al. [126] have observed only a single set of halogen resonance frequencies for the $[CuX_2]^-$ ion in $[Bu_4^nN]CuCl_2$, $[Ph_4As]CuCl_2$ and $[Bu_4^nN]CuBr_2$ and have interpreted the data in terms of centrosymmetric, linear $[CuX_2]^-$ ions. The ionic character of the M—X bond in these complexes is found to be more in the Cu—Br bond than in the Cu—Cl bond [126].

NQR spectra of a number of compounds containing [CuCl₃] anion have been reported by Scaife [116]. The data for these complexes have been interpreted on the basis of predominent covalent character of the Cu—Cl bond with only 10% contribution to the EFG from the lattice charges. The low frequency resonances in these compounds have been assigned to chlorine atoms engaged in long bridging interactions while the higher frequency resonances have been assigned to the terminal chlorines. Positive $(\partial \nu/\partial T)_p$ was observed for all the three resonances in NH₄CuCl₃ while the normal negative $(\partial \nu/\partial T)_p$ was observed in KCuCl₃. The difference in the temperature dependence of NQR spectra of these two complexes has been explained as due to a change in the degree of magnetic ordering [116]. While KCuCl₃ is not magnetically ordered even at 1.3 K, CsCuCl₃ is magnetically ordered below 10 K [127]. Zeeman experiments on ³⁵Cl NQR in KCuCl₃ show [127] that the asymmetry parameter for the bridging chlorine is larger (91.6%) than that for terminal chlorines (22.5 and 51.3%).

[Co(NH₃)₆] CuCl₅ exhibits two ³⁵Cl resonances (77 K) at 10.453 MHz and 9.642 MHz. The higher frequency resonance has been assigned [116] to axial chlorine atoms (of the trigonal bipyramidal arrangement of chlorines around Cu^{II}) and that occurring at 9.642 MHz to equatorial chlorine atoms. While the low frequency signal shows a negative $(\partial \nu/\partial T)_p$, the high frequency signal shows a moderate positive $(\partial \nu/\partial T)_p$. As the frequency due to axial chlorine atoms is lower than the expected value (based on the Cu—Cl bond length) and it shows a positive temperature coefficient, Scaife [116] has suggested that the π -character of the axial Cu—Cl bond is more than that for the equatorial Cu—Cl bond.

Compounds of the type AGa_2Cl_7 (A = Na, K, Rb and Ga^1) show two groups of ^{35}Cl resonances, one containing six resonances and the other only one. A structure similar to that of $(Al_2Cl_7)^-$ [107] involving a chlorine bridge has been suggested [114] for the ion $Ga_2Cl_7^-$ and the low frequency resonance has been assigned to the bridging chlorine. The sextet at higher frequencies is due to the "chemically inequivalent" terminal chlorine atoms [114]. Deeg and Weiss [114] have found that the ratios of the terminal halogen frequencies (average) to the bridging halogen frequencies in compounds having the anion $M_2X_7^-$ (M = Al, Ga) are greater for the Ga^{III} compounds than for the Al^{III} compounds. This has been explained [114] as due to the greater degree of terminal M-X $p\pi \rightarrow d\pi$ bonding in Al^{III} compounds than that in Ga^{III} compounds.

Bridging and terminal halogen resonances have been observed in ACuCl₃ [116,127], AMnCl₃ [129,130], [HgI₃]⁻ [131], AHgCl₃ [117,132], CsPbCl₃ [133–135], KAl₂Br₇ [114] and A₃Sb₂X₉ [136]. Only two resonances which could be assigned to the \pm 1/2 \rightarrow \pm 3/2 transition have been observed in (CH₃NH₃)₃Sb₂I₉ [136]. The low frequency resonance in this compound has been assigned to the bridging iodine [136]. The terminal halogen resonances in [Sb₂Br₉]³⁻ are lower than those in [SbBr₆]³⁻ even though the Sb—Br bond lengths in the former are less than those in the latter. This has been attributed [136] to the distortion of the Sb^{III} kernel to decrease the electron density in the region of the bridging halogen atoms. The terminal chlorine frequencies have not been observed in [(CH₃)₄N]₂ - [(Nb₆Cl₁₂)Cl₆]. Based on structural and chemical facts, it has been suggested [137] that the terminal halogens in the cluster anion are ionic in nature and that the resonance frequencies for them are much lower than those for the bridging halogens.

Hydrogen bonding in hydrated salts has been shown to cause large frequency shifts in NQR spectra [122,138]. The presence of water molecules apparently increases the spread of resonance frequencies as in Na₂ZnCi₄ · $3H_2O$ or increases the resonance frequency as in the salts $KZnX_3 \cdot 2H_2O$ [139]. The frequencies of bridging and terminal halogen atoms are also affected by the formation of hydrogen bonds [129].

4. Miscellaneous

 127 I NQR in simple iodates such as KCrIO₆ and complex iodates such as K₂Sn(IO₃)₆ has been reported by Shishkin et al. [195]. The e^2Qq values in these compounds show a linear dependence on the ionic radius and oxidation state of the cation. Further, e^2Qq and η values in these complexes depend on the oxidation state of the central metal ion of the [M(IO₃)₆]^{n^-} octahedron.

A number of complexes of mercury(II) halides with various oxygen donor ligands has been studied by NQR spectroscopy [117,140-148] (Table 6). The ³⁵Cl NQR in HgCl₂(dioxane) occurs at a lower frequency than the parent halide, while those of HgBr₂(dioxane) and HgI₂(dioxane) occur at a higher frequency than the parent halide. This has been explained by Brill [141] as

TABLE 6 Halogen NQR frequencies of complexes of mercury(II) halides

Compound	Nucleus	Temperature ^a (°K)	Halogen frequency (MHz)	Ref.
HgCl ₂ (dioxane)	35Cl	R.T.	20.454	141
HgCl ₂ (dioxane) ₂	³⁵ Cl	R.T.	21.15	144
$HgCl_2(methanol)_2$	35Cl	298	20.205, 20.052	142
HgCl ₂ (THF) d	35Cl	298	21.014, 19.628	142
HgCl ₂ (DMSO) ^c	35Cl	296	21.184, 20.075	143
HgCl ₂ (acetophenone)	35Cl	298	20.872, 19.396	143
HgCl ₂ (benzophenone)	35Cl	298	21.685, 20.742	143
HgCl2(benzoquinone)	35Cl	296	20.540	143
HgCl ₂ (2,6-dimethyl-	•		_0.010	- 10
γ-pyrone)	35Cl	296	19.155	143
HgCl ₂ (PyO)	35Cl	298	19.461, 19.022	142
HgCl ₂ (4-MePyO)	35Cl	298	21.451, 20.050	142
HgCl ₂ · DMF	35Cl	230	20.208, 20.456	142
HgCl ₂ · dimethoxyethane	35CI		21.326	140
HgCl ₂ · CH ₃ SCH ₂ CH ₂ -	C:		41.040	140
SCH ₃	35Cl	77	16 80 16 00	150
HgCl ₂ (CH ₃) ₂ NCH ₂ CH ₂ -	Ci	4.4	16.89, 16.92	150
$N(CH_3)_2NCH_2CH_2$	35Cl	77	17.96	150
HgBr ₂ (dioxane)	⁷⁹ Br	R.T.		
	⁷⁹ Br		160.03	141
HgBr ₂ (dioxane) ₂	81 Br	R.T.	170.07	144
HgBr ₂ (THF)	81 Br	298	136.74, 130.22	142
HgBr ₂ (acetophenone)	81 Br	298	135.73, 128.49	142
HgBr ₂ (benzophenone)	81 Br	298	139.17, 136.26	142
HgBr ₂ (2-phenoxathiin)	81 Br	298	130.14, 128.87	142
HgBr ₂ (PyO)		298	141.21, 132.03	142
HgBr ₂ (4-MePyO)	81 Br	298	141.33, 131.55	142
HgBr₂ · 2DMSO	81 Br		128.08, 134.78,	140
u.p. pwp	81 m		141.45, 141.84	
$HgBr_2 \cdot DMF$	⁸¹ Br		122.87, 134.60,	140
	81-		136.00	
HgBr ₂ (dimethoxyethane)	⁸¹ Br		141.23, 140.40	140
HgBr ₂ (CH ₃ SCH ₂ CH ₂ -	⁸¹ Br	77	110 00 110 44	150
SCH ₃)	a- Br	77	116.00, 116.44	150
HgBr ₂ (CH ₃) ₂ NCH ₂ -	815		117 50 100 05	
$CH_2(CH_3)_2$	⁸¹ Br	77	117.56, 123.05	150
HgI ₂ (dioxane)	127 _I	R.T.	172.77 b	141
HgI ₂ (PyO)	127 _I	298	172.51, 164.63 b	142
HgI ₂ (4-MePyO)	127I	298	174.53, 167.13 b	142
HgI ₂ (CH ₃ SCH ₂ CH ₂ -			•	
SCH ₃)	¹²⁷ I	77	152.93, 156.44 b	150
$HgI_2(CH_3)_2NCH_2CH_2$			_	
$N(CH_3)_2$	¹²⁷ I	77	148.13, 153.84 ^b	150

<sup>a R.T. = Room temperature (not specified).
b Resonance due to ±1/2→±3/2 transition.
c Resonances for this compound have been obtained at 19.878 and 19.484 MHz [140].
d Resonances have been reported at 20.584 and 19.272 MHz [140].</sup>

due to a weak interaction of dioxane with $HgBr_2$ and HgI_2 such that no significint charge transfer takes place in these complexes. The Hg^{II} halides are considered to act more as free but ordered molecules in a lattice containing dioxane molecules of crystallization [141]. The trend in strength of interaction of Hg^{II} with dioxane appears to be in the order of $HgCl_2 > HgBr_2 > HgI_2$. The shift of NQR to higher frequencies in $HgBr_2$ and HgI_2 complexes may also be due to changes in Hg-X π -bond character [140].

Similar trends have been observed in the Hg^{II} halide complexes with tetrahydrofuran (THF), benzophenone, acetophenone, phenoxathiin, methanol, pyridine-1-oxide (PyO) and 4-methylpyridine-1-oxide (4-MePyO) [142]. Patterson et al. [144] have interpreted the halogen NQR spectra in HgX₂-(dioxane) and HgCl₂(dioxane)₂ in terms of substituting oxygen for halogen in the highly distorted octahedral coordination about Hg^{II} in HgCl₂. The presence of two widely separated ³⁵Cl resonances in HgCl₂ complexes with THF, dimethylsulphoxide (DMSO), acetophenone, PyO and 4-MePyO has been attributed to the presence of both bridging and terminal chlorine atoms in these complexes [141,143], (however, see ref. 149). Temperature dependence of ³⁵Cl NQR in HgCl₂ · 4MePyO has also been reported [147].

More recently [273] the appearance of two NQR signals separated by a few MHz in mercuric halide complexes has been suggested to be due to differences in the intermolecular interactions experienced by the two halogens of the same HgX₂ group. The extent of splitting depends on the number of nearest neighbours of Hg^{II} as well as that of the halogen. From a study of ³⁵Cl, ⁷⁹Br, ⁸¹Br and ¹²⁷I NQR in a number of mercuric halide adducts of polyethers such as glyme and diglyme and a crown ether (18-crown-6) and from the data available in literature, Wulfsberg [273] has proposed that the possible structure of the adducts of HgX₂ may be postulated from NQR data.

Complexes of the type $HgX_2 \cdot D$ (X = Cl, Br or I; D = $-SCH_3$, N(CH₃)₂, $-OCH_3$, disubstituted ethanes) have been studied by Bryukhova et al. [150] by halogen NQR spectroscopy. The results show that in the complexes where X = Cl or Br, the halogens are equivalent indicating a linear X-Hg-X group. For the X = I compounds, the tetrahedral coordination around Hg^{II} is destroyed and the asymmetry parameter, η , is severely decreased. Babushkina et al. [151] have studied the covalency changes in the M-X bond in complexes of the type $MX_2 \cdot L_2$ (where M = Zn, Cd, Hg, X = Br and I and L = nitrogen containing heterocyclic ligand) using ⁷⁹Br, ⁸¹Br and ¹²⁷I NQR. The covalent character of the M-X bond decreases when Hg^{II} and Zn^{II} halides are complexed. However, in the case of CdBr₂ and CdI₂, the covalent character of the M-X bond increases on complexing with the ligand.

³⁵Cl NQR in CuCl₂ · PyO complexes has been studied by Frausto da Silva et al. [152,153]. The chlorine resonances observed for CuCl₂ · PyO complexes have been assigned to terminal halogens which differ in the Cu—Cl bond length [153]. While the DMSO adduct of CuCl₂(PyO) shows an increase in both the resonance frequencies relative to those of CuCl₂(PyO) by about

0.2 MHz, the PyO adduct shows a decrease of about 0.24 MHz for both the resonances. This may be due to the possible hydrogen bond formation in the PyO adduct which cannot happen in the DMSO adduct [153].

³⁵Cl NQR frequencies of BCl₃ and its amine complexes [154] and nitrile complexes [155,156] have been reported. The coupling constants have been interpreted in terms of two molecular theories, BEEM- π and CNDO [156]. ³⁵Cl and ⁶⁹Ga NQR have been reported for a number of 1 : 1 complexes of GaCl₃ with a variety of donor ligands [157–160]. Only the adduct of GaCl₃ with CH₃CN gives a single resonance line indicating a C_{3 ν} symmetry for the complex in the solid [158]. Structures involving halogen bridges and [GaCl₄] ion have been ruled out by halogen NQR data [157,158]. From the ³⁵Cl NQR data on GaCl₃ complexes with different ligands, Carter et al. [159] have concluded that the basicity of the ligands increases in the order R₃P< R₃As < R₂S < R₂O where R = Me or Et.

Rogers and Ryan [161] have partly used the point charge model calculations in assigning the frequencies in the complexes of $POCl_3$ with a number of metal halides. Analysis of the result using the Townes—Dailey approach indicates the decrease in Lewis acid strength of the metal halides studied in the order $SbCl_5 > FeCl_3 > SnCl_4 > TiCl_4$. Temperature dependence of the ^{35}Cl NQR in these complexes has indicated [161] the internal motion of the $-PCl_3$ group about its three-fold axis. The observation of only two resonance frequencies for $POCl_3$ in $SnCl_4 \cdot POCl_3$ (the crystal structure demands the observation of four resonances) has been explained by assuming a lower barrier for rotation in one $-PCl_3$ group so that even at 77 K, the resonances for that set would be lost while those for the second set would only disappear at higher temperature [161]. In $SbCl_5 \cdot POCl_3$, there is evidence for a hindrance of vibration of one of the chlorines and extensive rotational (or librational) motion of the $POCl_3$ group about the PO bond at room temperature [271]. Rotation of $SnCl_3$ group has been reported by Kume et al. [162] in the complex $SnCl_3Mn(CO)_5$

The frequency splitting and shifts of the 35 Cl resonance frequencies in complexes of the type $SnCl_4 \cdot L_2$ are based on the cis or trans structure of the complex [163,164]. As all the four chlorines are equivalent in the trans isomer and two pairs of equivalent chlorines are present in the cis isomer, the complexes showing two sets of resonances have been assigned the cis configuration [163]. Of the two sets of resonances exhibited by the cis complexes, the higher frequency resonances have been assigned to the equatorial chlorine atoms and the low frequency resonances to the axial chlorine atoms [163]. The splitting of the spectra is maximum at the lowest charge transfer and decreases with increasing charge transfer, finally giving a single intense line.

³⁵Cl, ⁷⁹Br, and ⁸¹Br NQR spectra in a number of charge transfer complexes (Menshutkin complexes) of AsCl₃, AsBr₃, SbCl₃ and SbBr₃ with aromatic hydrocarbons, ethers and amines have been studied [165—185]. The shifts in the halogen NQR frequencies in these compounds compared to the parent halides have been attributed to the charge transfer from the donor to the metal atom (As or Sb) or to the halogen by the interaction of the acceptor

atom with either the π -system or the lone pair of electrons on the heteroatom of the donor. Steric effects of the donor ligands also play an important role in deciding the extent of shift in the NQR frequency as well as the splitting pattern in the spectra. Zeeman effect on the NQR frequencies in 2AlBr₃ C_6H_6 , $2SbCl_3 \cdot C_6H_6$, $2SbBr_3 \cdot C_6H_6$ and $2SbCl_3 \cdot C_{10}H_8$ has also been studied [168,181-183]. The Cl-Sb-Cl bond angles obtained in these complexes (ca. 90-95°) show satisfactory agreement with those obtained by X-ray diffraction method. The value of η for the halogens in the SbX₃ complexes varies from 5 to 17%. 81 Br spectrum and the Zeeman study of the complex AlBr₃ · C₆H₆ [182] show that this complex is a dimer. The interbond angle, obtained by the Zeeman study, at the bridging bromine in this complex is 95.5 ± 0.2° and the bond angle between the two terminal bromines is 117.3 ± 0.5°. The corresponding values obtained from the X-ray diffraction method are 87 ± 2° and 122 ± 2° respectively. The difference between the values obtained by these two methods has been attributed [182] to the presence of bent bonds. The asymmetry parameter obtained for this complex at the bridging bromine site is 28.9 ± 1.1% and those obtained for the two terminal bromine sites are 8.6 ± 1.1 and $6 \pm 0.9\%$.

Poleshchuk et al. [186,187] have studied the chlorine NQR in the 1:1 complexes of SbCl₅ with donors such as pyridine, ammonia, diethylether, dioxane, benzonitrile and quinoline. Analysis of the results by the Townes—Dailey procedure indicates that the charge has been largely transferred to chlorine rather than to antimony. ³⁵Cl and ¹²¹Sb (¹²³Sb) resonances in SbCl₅ CH₃CN are consistent with a covalent structure in which Sb^V is hexacoordinated [271]. ³⁵Cl NQR studies have been made by Makridin et al. [188] on SbCl₅(ClCH₂)₂O. Burgard and Lucken [189] have reported the ³⁵Cl NQR in SbCl₅ · CNCl. 1:1 and 1:2 complexes of TeCl₄ with donors such as (C₃H₇)₂S and DMSO have been studied by ³⁵Cl NQR [190].

Observation of two 35 Cl resonances (at 9.265 and 9.592 MHz) in Rb₂-VOCl₄ has been attributed [191,192] to the existence of two sets of chlorine nuclei in non-equivalent positions. Safin [193] has observed two types of bromine sites in Rb₂UO₂Br₄ by temperature dependence of the 81 Br NQR. The difference in $(\partial \nu/\partial T)_p$ for the two sites is shown to be due to bromine to water hydrogen bonding. The temperature dependence of halogen NQR frequencies in acetic acid complexes of vanadium(III), [(CH₃)₄N]-[VCl₄(AcOH)₂] and [(CH₃)₄N][VBr₄(AcOH)₂], has shown [194] some interesting results. While the higher frequency line shows a normal negative $(\partial \nu/\partial T)_p$ the low frequency resonance exhibits a positive $(\partial \nu/\partial T)_p$. The higher frequency resonance disappears at 77 K. This observation has been explained [194] by assigning the low frequency line to a pair of halogens which are π -bonded but not hydrogen bonded and the higher frequency lines to a pair of halogens which are both π -bonded and hydrogen bonded.

 35 Cl NQR in a few cobaloximes shows [197] that the covalency of the Co-Cl bond gets reduced by the electron-donor ligand present *trans* to the chlorine, the interaction of $P(C_6H_5)_3$ being more than that of pyridine. No such trend has been observed for *trans*-dichlorocobaloximes. A number of

complexes of ethylenediamine (en) and NH₃ with Co(III) salts have been studied by 35 Cl NQR [198–204]. Trans-[Co(en)₂Cl₂]ClO₄ [198] and [Co(NH₃)₅Cl]SO₄ · H₂SO₄ [204] show two 35 Cl resonances consistent with two inequivalent cobalt sites observed by 59 Co NQR. Analysis of 35 Cl NQR data using Townes—Dailey procedure indicates ~35% covalent character in the Co—Cl bond of these complexes. The 35 Cl resonance in trans-[Co(en)₂Cl₂]-Cl · HCl · 2H₂O is similar to that in trans-[Co(tn)₂Cl₂]Cl · HCl · 2H₂O (tn = trimethylenediamine) indicating that the Co—Cl interaction and population of the Co(d_{22}) orbital which is involved in Cl—Co—Cl bonds are virtually unchanged in these complexes [203].

A number of cis—trans isomers of the type MX_2L_2 ($M = Ni^{II}$, Pd^{II} or Pt^{II}) have been studied by Fryer and Smith [106,205,206]. The trans- $PtCl_2 \cdot L_2$ complexes exhibit resonances at higher frequencies than the cis- $PtCl_2 \cdot L_2$ complexes (Table 7). The difference between the ^{35}Cl NQR frequencies of the trans complex and those of the cis complex, is a measure of the trans influence of the ligand L [206]. On changing the ligand L, resonances due to both

TABLE 7
Chlorine-35 NQR frequencies of some square planar platinum(II) and palladium(II) complexes

Compound ^a	Temperature (°K)	v (MHz)	Ref.
trans-(piperidine) ₂ PdCl ₂	273	16.11, 16.31	205
trans-(pyridine)2PdCl2	273	17.72	205
trans-(Bu ₃ ⁿ As) ₂ PdCl ₂	273	18.23, 18.59	205
$trans-(Bu_3^{\overline{n}}P)_2PdCl_2$	273	18.37, 18.50, 18.58, 18.63	205
trans-(EtCN)2PdCl2	273	20.30	205
trans-(C ₆ H ₅ CN) ₂ PdCl ₂	273	20.58	205
trans-[(CH ₃) ₂ NH] ₂ PtCl ₂	273	18.16	205
trans-(NH ₃) ₂ PtCl ₂	273	17.30	205
trans-(pyridine)2PtCl2	273	19.62	205
trans-(Et ₃ P) ₂ PtCl ₂	273	20.99	205
$trans-[(C_6H_5)Bu_2^nP]_2PtCl_2$	273	21.32, 21.64	106
cis-[(CH ₃) ₂ NH] ₂ PtCl ₂	273	17.21	206
cis-(pyridine)2PtCl2	273	17.65	206
cis-(Bu ₃ ⁿ P) ₂ PtCl ₂	273	17.73, 17.79, 17.89, 17.96	106
cis-[(C ₆ H ₅)Et ₂ P] ₂ PtCl ₂	273	17.82, 17.99	106
$cis-[(C_6H_5)Bu_2^nP]_2PtCl_2$	273	18.33	106
cis-(bipyridine)PtCl2	273	18.98	106
cis-(EtCN) ₂ PtCl ₂	273	21.05, 21.33	106
(bipyridine)PdCl ₂	273	17.82, 18.35	106
(DMSO) ₂ PdCl ₂	273	19.75	106
trans-(Bu ₃ ⁿ P) ₂ PtCl ₂	273	20.90, 21.04, 21.08	106

^a $Bu^n = n$ -butyl; Et = ethyl; DMSO = dimethylsulphoxide.

trans and cis complexes move in the same direction [206]. In the trans PtII series the decrease in the 35Cl NQR frequency has been correlated to the increase in the Pt-Cl bond length [106]. A greater spread of Pt-Cl bond distances for a given range of 35Cl resonances has been observed when the trans ligand is changed, than when the cis ligand is changed. In the trans-PdCl₂L₂ series, the charge on the chlorine atom increases as L is changed in the following sequence: PhCN, EtCN, Bu_3^nP , Bu_3^nAs , pyridine and piperidine. A similar trend has been observed for the corresponding PtII complexes also. The increase in the charge on chlorine indicates a weakening of the M-Cl bond which appears to assist nucleophilic substitution reactions of the chlorine. The above order of cis influence of the nucleophiles has been explained by Fryer and Smith [205] as due to either (i) the increasing charge donation from left to right in the series allowing the cis M—Cl bond to become increasingly polarized or (ii) the possibility that the ligands which weaken the trans bond simultaneously strengthen the cis bond. An interpretation of the cis effect in planer d^8 complexes of the type PtCl₂XY based on experimental NQR data has been presented by Schreiner and Brill [207]. No appreciable cis effect on 35Cl NQR has been observed in PtCl₂(C₂H₄)L compounds [208].

A common feature in the spectra of mono-olefin complexes of the type [PtCl₃L]⁻ is the presence of a pair of higher frequency resonances and one low frequency resonance [138,209]. The low frequency resonance has been assigned to the *trans* chlorine. Temperature dependence studies on Zeise's salt reveal that, of the two *cis* chlorine atoms which are responsible for the pair of high frequency resonances, the one responsible for the higher frequency resonance is involved in a stronger hydrogen bond than the other [138]. The observed order of the olefins in terms of increasing ³⁵Cl frequencies, ethylene < butene < styrene, is probably influenced by both inductive effect and steric character of the substituents on ethylene [138]. Yesinowski and Brown [209] have studied the ⁸¹Br NQR in K[PtBr₃(C₂H₄)]-H₂O, K₂PtBr₄ and PtBr₂L (L = cyclooctatetraene). As in the corresponding chloro complex, the low frequency resonance (103.2 MHz) and the high frequency resonances (130.9 and 132.5 MHz) have been assigned to *trans* and *cis* bromine atoms respectively [209] in K[PtBr₃(C₂H₄)]H₂O.

In complexes of the type trans-(LPtCl₂)₂ and trans-(LPdCl₂)₂, where both bridging and terminal chlorines are present, the higher frequency resonance has been assigned to the terminal halogen [174]. This assignment has been supported by photoelectron spectroscopic studies on trans-[(Et₃P)₂Pt₂Cl₄] which show lower binding energy for the bridging chlorines than that for the terminal chlorines [210]. A correlation between the (Cl $2p_{3/2}$) binding energy and ³⁵Cl NQR frequency has also been obtained for these compounds (Fig. 5) [210].

Differences in NQR frequencies of tetrahedral and square planar complexes of Ni^{II} have been observed by Smith and Stoessiger [211] (Table 8). The differences have been attributed to the presence of partially filled metal orbitals suitable for M-X π -bonding in the tetrahedral complexes and the absence of

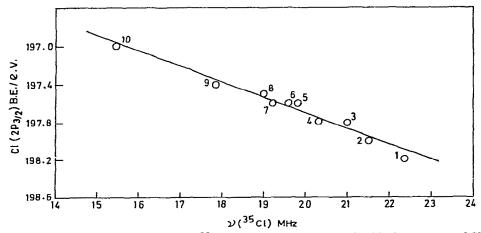


Fig. 5. Correlation between the 35 Cl NQR frequency and the binding energy $[Cl(2p_{3/2})]$ in a few Pt^{II} complexes. (Redrawn with the permission of the publisher, Chemical Society, London, and the authors, from ref. 210.)

such orbitals in the square planar complexes [211]. An estimation of π -bonding in tetrahedral complexes has been made by comparing the ³⁵Cl e^2Qq of the squre planar and tetrahedral complexes.

³⁵Cl NQR in tris-(sarcosine)calcium chloride has been studied [212] as a function of temperature in the range 127—320 K. The measured NQR frequency at room temperature (2.175 MHz) is one of the lowest reported ³⁵Cl NQR frequencies so far. Point charge model calculations indicate that the EFG at the chlorine site is mainly determined by the hydrogens involved in three hydrogen bonds, N—H...Cl, around each chlorine [212]. Blinc et al.

TABLE 8
Halogen NQR frequencies of some square planar and tetrahedral nickel(II) complexes [211].

Compound	Stereochemistry	Temperature (°K)	Nucleus	ν (MHz)
$[(C_6H_5)_3P]_2NiCl_2$	Tetrahedral	298	35Cl	9.471
[(CH ₃) ₄ N] ₂ NiCl ₄	Tetrahedral	273	35CI	8.85, 9.05
$[(C_6H_5)_3P]_2NiBr_2$	Tetrahedral	298	⁷⁹ Br	71.07, 75.15
$[(C_5H_5)_3P]_2NiI_2$	Tetrahedral	298	127I	$71.04 (\nu_1)$ $138.00 (\nu_2)$
$[(n-C_3H_7)_3P]_2$ NiCi ₂	Square planar	298	35Cl	15.852
$[Bu_3^nP]_2NiCl_2$	Square planar	273	35Cl	15.99
$[(n-C_3H_7)_3P]_2$ NiBr ₂	Square planar	308	⁷⁹ Br	126.26
$[Bu_3^nP]_2NiBr_2$	Square planar	308	⁷⁹ Br	126.53

[213] have observed that the chlorine environment and the lengths of the N—H...Cl hydrogen bonds significantly change on going through the phase transition in this complex. The hydrogen bonded chlorine atoms seem to play an important role in the transition mechanism in addition to the rotational distortion of the sarcosine octahedron.

Halogen NQR in compounds such as $C_5H_5Fe(CO)_2X$ (X = Cl, Br or I), $[C_5H_4 \cdot C_2H_2B_{10}Hg]Fe(CO)_2Br$ [214] and $Cl_nTi(C_5H_5)_{4-n}$ (n=2-4) [215] has been reported. Halogen NQR in other organometallic complexes where the chlorine is a part of the ligand has also been reported [for example 162, 217–222]. ³⁵Cl NQR in a few complexes of 3-chloroacetylacetone with different metal ions has been shown [216] to vary markedly according to the polarity or charge of the complex. The non-polar complexes show resonances around 36 MHz while the polar or charged complexes show resonances around 38 MHz [216].

B. Copper-63 and copper-65 resonances (Table 9)

The first NQR report [3] on a coordination compound is the 63 Cu resonance in KCu(CN)₂. Zeeman NQR [223] study of this complex has yielded the asymmetry parameter η as 78 ± 7%.

 63 Cu and 65 Cu resonances in a few (CuX₂)⁻ compounds have been interpreted [126] in terms of ds hybridization on the Cu^I ion. 63 Cu and 65 Cu NQR frequencies in (Ph₃MeP)Cu₂I₃ have shown [128] the presence of two crystallographically inequivalent copper sites in this compound. Based on the signal to noise ratio for the two crystallographically inequivalent copper sites, the compound is shown [128] to have the tetramolecular [Cu₄I₆] $^{2-}$ species.

Cu—S bonds in complexes of copper(I) with thiourea (and substituted thiourea) have been shown to be quite covalent by ⁶³Cu and ⁶⁵Cu NQR studies [224,225]. The observed resonance frequencies have been shown to be dependent on the metal—ligand bond lengths and inductive effects of the substituents in the substituted thiourea complexes [224]. ⁶³Cu and ⁶⁵Cu NQR frequencies in some copper-N,N'-dialkyldithiocarbamates are relatively constant [226], lying within 0.5 MHz of 26.5 MHz. This constancy has been explained as due to the fact that the basic Cu₄ tetrahedral unit with its interlocked dithiocarbamate groups is a rigid structure less susceptible to distortion due to packing or solvation.

 63 Cu and 65 Cu NQR in a few complexes of trimethylphosphine sulphide [227,228] and trimethylarsine sulphide [228] with Cu¹ salts has been interpreted in terms of partial d-orbital vacancy which arises due to the promotion of the electronic charge density from the $3d_z^2$ orbital to the vacant 4s orbital of the copper atom. Graybeal et al. [227] have calculated the EFG at the Cu^I site in [Cu((CH₃)₃PS)₃]⁺ by an extended Hückel molecular orbital EHMO method. The calculated e^2Qq is only 30% of the observed value. This difference in the e^2Qq may be due to (i) the use of Slater type basis orbitals in

TABLE 9 Copper-63 and copper-65 resonance frequencies of some copper(I) complexes

Compound a	Temperature (°K)	Cu-63 resonance (MHz)	Cu-65 resonance (MHz)	Ref.
K[Cu(CN) ₂]	289	33.479	30.221	3
(Bu ⁿ ₄ N)CuCl ₂	77	30.7	28.3	126
[(C ₆ H ₅) ₄ As]CuCl ₂	77	31.15	28.75	126
[Bun NICuBra	77	28.85	26.60	126
$[(C_6H_5)_3(CH_3)P]Cu_2I_3$	77	26.8, 26.15	24.55, 23.95	128
Cu(tu)2Cl		22.115, 19.296	20.465, 17.856	224
Cu(tu) ₂ Br		16.443, 16.181	<u>-</u>	224
$Cu_4(tu)_9(NO_3)_4$		25.088	23.280	224
Cu(etu)2ClO4		22.881	_	224
[Cu(2tu)4]2SO4		31.562	29.250	224
Cu(etu) ₂ Cl		27.860	25.753	224
Cu(etu) ₂ Br		32.010	29.620	224
Cu(dtu) ₃ C!		38.804	36.825	224
Cu[(CH ₃) ₃ PS] ₃ ClO ₄ b	77	26.35	24.39	228
Cu[(CH ₃) ₃ AsS] ₃ ClO ₄	77	24.16	22.35	228
[(CH ₃) ₃ PSCuCl] ₃	77	29.24, 28.44	26.77, 26.34	228
$[(CH_3)_3PSCuBr]_n$	77	27.53, 27.18	25.49, 25.16	228
[(CH ₃) ₃ PSCu ¹] _n	77	24.91, 24.92	-	228
[(CH ₃) ₃ AsSCuCl] _n	77	29.05, 28.25	26.86, 26.10	228
$Cu[(CH_3)_3PS]_3BF_4$	300	24.838	22.985	227
Cu(dtc)	293	26.956	24.949	226
Cu[Bu2dte]	293	25.949, 26.824	23.997, 24.827	226
$Cu[(n-C_3H_7)_2dte]$ -	293	26.238, 26.432,	24.278, 24.461,	226
1/8 CS ₂		26.476	24.497	
Cu[(n-C ₃ H ₇) ₂ dte]- 1/2 CHCl ₃	293	26.270, 26.343, 26.504, 26.765	24.313, 24.375, 24.525, 24.764	226

a Abbreviations: tu = thiourea; etu = ethylenethiourea; dtu = N,N'-dimethylthiourea; dte = N,N-diethyldithiocarbamate; Bu₂ⁿdtc = N,N-di-n-butyldithiocarbamate.

b Graybeal et al. [227] have reported ⁶³Cu and ⁶⁵Cu resonances (300 K) at 24.815 and

the calculation and (ii) the value of Sternheimer antishielding factor used in the calculation [227].

C. Gallium-69 resonances

Tong [158] has reported 69Ga NQR in a number of donor-acceptor complexes containing GaCl₃ as the acceptor. ⁶⁹Ga resonances in these complexes are more sensitive to the changes in the ligands than the ³⁵Cl resonances [158]. In most of these complexes $(\partial \nu/\partial T)_p$ values for the ⁶⁹Ga resonances are positive. All these complexes are shown to be monomeric from their ⁶⁹Ga and

^{22.968} MHz respsectively.

³⁵Cl NQR spectra. It has been suggested [158] that ⁶⁹Ga NQR frequency might be a useful guide to the relative strength of coordination in different complexes; the weaker the donor the higher the frequency. Good correlation of the ⁶⁹Ga and average ³⁵Cl frequencies with gas phase heats of formation has also been obtained [158]. ⁶⁹Ga resonances in compounds such as $GaCl_3$: $O(C_2H_5)_2$ [157] and compounds containing the anions $[Ga_2Cl_7]^-$ and $[GaCl_4]^-$ [114] have also been reported.

D. Arsenic-75 resonances

⁷⁵As NQR in a few substituted dithiocarbamates and O-ethylxanthate complexes of As^{III} has been studied by Bastow and Whitefield [226]. ⁷⁵As frequencies in these complexes show a marked variation upon changing the substituent in the dithiocarbamate ligand. This may be due to changes in the S—As—S pyramidal angle in these complexes [226]. It has been observed that $(\partial \nu/\partial T)_p$ for the As^{III} O-ethylxanthate complex in the temperature range 77—195 K is approximately three times that in the range 195—293 K.

Grechishkin et al. have studied the 75 As NQR in a number of Menshutkin complexes based on AsCl₃ and AsBr₃ [229–234]. Extraordinary frequency shifts have been observed for the 75 As resonances in these complexes. Comparison of 75 As spectra with 121 Sb spectra of similar complexes indicates that the arsenic d-orbitals have more tendency to form $d\pi$ – $p\pi$ bonds than those of antimony. Multiplicity of 75 As resonances also surpasses that of 121 Sb and 123 Sb frequencies in similar compounds. Shift in the 75 As resonance frequencies of the complex compared to the parent halide is usually towards the lower frequency region. The shifts correlate linearly with the ionization potential of the donor ligands: the lower the ionization potential of the ligand, the greater will be the shift. Patterson and Carnevale [235] have reported the 75 As NQR in (CH₃)₃In · As(CH₃)₃.

E. Mercury-201 resonances

Patterson et al. [144] have reported ²⁰¹Hg NQR in the complexes HgCl₂(dioxane)₂ (323.38 MHz) and HgBr₂(dioxane)₂ (313.23 MHz). ²⁰¹Hg and ³⁵Cl NQR data in these complexes have been discussed [144] in terms of finer details of the structure of these complexes.

F. Nitrogen-14 resonances

Nitrogen-14 is one of the important nuclei which can be studied by NQR. However, ¹⁴N NQR has been studied only in a few metal complexes [213, 236—239]. Nakamura and co-workers [236] have studied ¹⁴N NQR in Zn^{II}, Cd^{II}, Hg^{II}, Cu^I, Pt^{II} and Co^{II} cyano complexes. The quadrupole coupling constant of ¹⁴N in complexes of the metal ions having no vacant *d*-orbitals (e.g. Zn^{II}, Cu^I) are higher than those of Pt^{II} and Co^{II} complexes (Table 10).

TABLE 10	
Nitrogen-14 NQR parameters for some	metal cyano complexes at 77 K [236]

Compound	ν ₊ (kHz)	ν_ (kHz)	ν ₀ (kHz)	$e^2 Qq/h \ (ext{kHz})$	η (%)
K ₂ Zn(CN) ₄			3104.2	4139.0	0.00
K ₂ Cd(CN) ₄			3149.1	4198.8	0.00
K2Hg(CN)4			3035.6	4047.5	0.00
	3069.4	3041.4		4073.9	1.37
K ₂ Cu(CN) _d	3002.1	2943.8	******	3963.9	2.94
$K_2Pt(CN)_4 \cdot 3H_2O$	2641.2 2614.2	2594.7 2549.7	Assesse	3467.0	3.2
K ₃ Co(CN) ₅	2794.5	2709.9			
	2789.2	2706.3		3684.0	3.0
	2787.8	2688.8			

It has been suggested [236] that the metal—ligand bonds in Pt^{II} and Co^{II} complexes have greater $d\pi - p\pi$ bond character than those in Zn^{II} , Cd^{II} , Hg^{II} and Cu^{I} complexes. Saruwatari et al. [237] have studied the temperature dependence of ^{14}N NQR in $K_2Hg(CN)_4$ and located a phase transition at 111 K. The temperature dependence of the ^{14}N NQR in this compound has been shown to be determined mostly by the rotational oscillation of the cyanide group [237].

Brown and co-workers [238] have studied the ¹⁴N NQR in a number of bis(glyoximato)metal complexes like bis(dimethylglyoximato)nickel(II). The ¹⁴N coupling constants of the complexes have been compared with the free ligand values and have been interpreted in terms of changes in nitrogen orbital occupancies and bond angles. The nitrogen orbital directed towards the metal has been estimated to have an occupation number of 1.65 in Ni(DMG)₂ and 1.75 in Pd(DMG)₂ as compared with 2 in the free ligand.

Blinc et al. [213] have studied the ¹⁴N NQR in tris(sarcosine)calcium chloride. At room temperature two nitrogen sites have been observed in this complex. On lowering the temperature the inequivalence is removed and at 77 K only one resonance line has been observed [213]. ¹⁴N NQR in a series of hexamethylenetetramine complexes with lithium halide hydrates has been reported by Dresvyankin et al. [239]. ¹⁴N NQR along with ³⁵Cl NQR has been used by Andreeva et al. [164] in assigning the *cis-trans* structures in a number of complexes of the type SnCl₄ · 2L (where L = phosphoric acid amides).

G. Manganese-55 resonances (Table 11)

A number of 55 Mn NQR reports has appeared on manganese pentacarbonyl and its derivatives [220,221,240-246]. Voitländer et al. [240] first reported the 55 Mn NQR in manganese pentacarbonyl. From a study of a number of substituted π -cyclopentadienylmanganesetricarbonyls, Nesmeyanov et al. [221,

TABLE 11 Manganese-55 NQR parameters for manganese carbonyl and its derivatives

Compound	v(±1/2→±3/2) (MHz)	v(±3/2→±5/2) (MHz)	n (%)	e ² Qq/h (MHz)	Temperature (°K)	Ref.
Mn2(CO)10	10 16	19.350	1 5	1 2	293	240
NaMa(CO)s	10.48	19 940	10 96	07.1 65	200 2008	260
Ni(1,10-phen)3[Mn(CO)3]	9.45, 9.66	18.670,	္တ	62.4	298	260
	•	18.990	12	63.5		
Ni(1,10-phen) ₃ [Mn(CO) ₄ P(OCH ₃) ₃] ₂	11.52	22,920	က	76.5	298	260
Ni(1,10-phen) ₃ [Mn(CO) ₄ P(C ₆ H ₅) ₃] ₂	12.92	25.310,	13	84.7	298	260
		25.690,	9	85.8		
		25,690				
(Pyrrole)Mn(CO) ₃	10.2287	19.9355	14.25	i		243
(CO) ₃ MnC ₅ H ₅	9.79	19.572	1.9	65.24		243,240
(CO) ₃ MnC ₅ H ₄ COCF ₃	60.6	17.736	13.9	59,35		241
(CO) ₃ MnC ₅ H ₄ COOCH ₃	9.21	18,348	5.6	61.20		241
(CO) ₃ MnC ₅ H ₄ COCH ₃	9.29	18.472	8.9	61.63		241
(CO) ₃ MnC ₅ H ₄ COOH	9.34	18.682	0	62.27		241
(CO) ₃ MnC ₅ H ₄ COC ₆ H ₅	9.50	18.672	11.8	62.41	11	241
(CO)3MnCsH4SO2NH2	9.58	19.050	6.9	63.56		241
(CO) ₃ MnC ₅ H ₄ CH ₃	9.75	19.452	4.4	64.86		241
(CO) ₃ MnC ₅ H ₄ CH ₂ Cl	9.77	19.476	5.1	64.95		241
(CO)3MnC5H4SO3Na+	9.88	19.740	2.9	65.81		241
(CO) ₃ MnC ₅ H ₄ I	10.07	20.094	4.3	67.00		241
(CO) ₃ MnC ₅ H ₄ NHCOOCH ₂ C ₆ H ₅	10.17	19.860	13.8	66.45		220
(CO) ₃ MnC ₅ H ₄ HgCl	9.61	19.150	5.6	63,86		220
	9,59	18,960	9.6	63.32		
(CO) ₃ MnC ₅ H ₄ CNOHCH ₃	9,65	19.060	10.2	63.72	298	220
(CO) ₃ MnC ₅ H ₄ CO ₂ NH ₄	9.47	18.88	4.6	62.97	298	220
$(CO)_3MnC_5H_4S-S$	9.59	18,84	11.9	62.97	298	220
(CO) ₃ MnC ₅ H ₄ SO ₂ H	9.43	18.77	6.1	62.61	298	220
	9.30	18,51	6.3	61.74		
(CO) ₃ MnC ₅ H ₄ CHO	9.24	18.23	10.2	60.89	298	220

TABLE 11 (continued)

Compound	v(±1/2→±3/2) (MHz)	ν(±3/2→±5/2) (MHz)	٦ (%)	e ² Qq/h (MHz)	Temperature (°K)	Ref.
(CO) ₃ MnC ₅ H ₄ CO ₅ Na ⁺		19.30	1	1	298	220
(CO) ₃ MnC ₅ H ₄ CONH ₂	-	18.57	1	1	298	220
(CO) ₃ MnC ₅ H ₄ —CH=Ç-Ç= ^O	ŧ	17.83	· ·	1	298	220
-o -z						
(U-						
Ċ,H ₅						
	3	17.960	ı		77	241
(CO), MnC, H, SO, CI	1	18.486	I	•	77	241
(CO)3MnC5H4SO3C2H5	I	19.300	I	144	7.7	241
(CO) ₃ MnC ₅ H ₄ C ₃ H ₅		19.380	ı	1	77	241
3-4-1-0		19.760				
(CO) ₃ MnC ₅ H ₄ COCH ₂ Cl	1	18.180	l	I	77	241
(CO)3MnC5H4COCH2Br	1	18,150	ı	-	11	241
(CO),MnC,H,(CH,Cl),	1	18.820	ı	1	77	241
(CO)3MnC5H3(CH3)	ł	19.610	ł	Line .	298	220
(SO3NH3C,H4CH3)						
(CO) ₃ MnC ₆ H ₆ Br ₃	7.712	15.420	1.4	51.40	298	246
(CO)3MnC,HtI3	7.910	15.819	0.7	52.73	298	246
(CO), MnC, H;BF4	7.750	15.463	4.3	51.56	298	246
(CO) ₃ MnC ₆ H ² ClO ₂	7.742	15.460	3.4	51.55	298	246
(CO), MnC, HtB(C,H,),	7.898	15.726	5.0	52.45	298	246
(CO), MnC, H5CH3Br3	8.111	16.198	3.6	54.00	298	246
(CO),MnC,H,CH,II	7.998	15.947	4.9	53.18	298	246
(CO) ₃ MnC ₆ H ₅ CH ₃ BF ₄	8.429	16.834		56.13	298	246
(CO) ₃ Mn[1,3,5·(CH ₃) ₃ C ₆ H ₃] [†] Br ₃	8.676	17.356	0	57.84	298	246
	8.733	17.490	0	58.22		
(CO) ₃ Mn[1,3,5-(CH ₃) ₃ C ₆ H ₃] ⁺ I ₃	8.628	17.225	3.9	57.42	298	246
		16.968				

246	246	246	246	246	246	246	246	245		245	245		245	245	245	245	245	245	245	245	245		245	245	245	245	245	245	245	245
298	298	298	298	298	298	298	298	298		298	298		298	298	298	298	298	298	298	298	298		298	298	298	298	298	298	298	298
55.14	59.87	61.88	61.74	63.62	1	i	ı	61.93		61.61	60.77		57.82	1	1	1	ı	ı	1	1	ı		I	1	I	I	i	I	1	Amana
3.7	4.9	7.2	5.1	1.4	ŀ	Į	ı	ı		1	1		i	1	ı	1	i	i	1	ı	i		ı	i	ı	i	i	ı	1	_
16.537	17.953	18.544	18.512	19.085	16.385	17.959	17.338	17.930		18.33	17.81		16.63	18.96	17.90	17.96	17.27	17.18	17.62	18.22	18.71	18.63	18.13	18.44	18.66	18.82	19.78	19.38	20.92	19.78
8.283	9.004	9.334	9.287	9.545	1	ı	ı	11.12	11,15	10.87	11.27	11.23	10.70	f	ı	eres d	ı	ı	I	l	ı		ı	ı	ŀ	١	ŀ	l	l	-
$(CO)_3Mn[1,3,5\cdot(CH_3)_3C_6H_3]^+BF_4^-$	$(CO)_3Mn(CH_3)_5C_6H^+Br_{\overline{3}}$	(CO) ₃ Mn(CH ₃) ₆ C ₆ ⁴ Br ₃	$(CO)_3Mn(CH_3)C_6^4I_3^5$	(CO) ₃ Mn(CH ₃) ₆ C ₆ ⁴ BF ₄	$(CO)_3Mn[1,4-(CH_3)_2C_6H_4]^+Br_3$	$(CO)_3Mn(CH_3)_5C_6H^+I_3^2$	$(CO)_3Mn(CH_3)_5C_6H^+BF_7$	(CO) ₂ MnC ₅ H ₅ (cis-cyclooctene)		$(CO)_2MnC_5H_5(cyclopentene)$	$(CO)_2MnC_5H_5(cycloheptene)$		(CO) ₂ MnC ₅ H ₅ (vinylene carbonate)	(CO) ₂ MnC ₅ H ₅ (norbornylene)	(CO) ₂ MnC ₅ H ₅ L a	(CO) ₂ MnC ₅ H ₅ L ^b .	(CO) ₂ MnC ₅ H ₅ (2,5·norbornadiene)	(CO) ₂ MnC ₅ H ₅ (piperidine)	(CO) ₂ MnC ₅ H ₅ (pyridine)	$(CO)_2MnC_5H_5(C_6H_5CN)$	(CO) ₂ MnC ₅ H ₅ (CH ₃ CN)		(CO) ₂ MnC ₅ H ₅ P(CH ₃) ₃	$(CO)_2MnC_5H_5P(i\cdot C_3H_7)_3$	$(CO)_2MnC_5H_5(PBu_3^3)$	$(CO)_2MnC_5H_5P(C_6H_5)_3$	$(CO)_2MnC_5H_5P(OC_6H_5)_3$	$(CO)_2 MnC_5 H_5 As(C_6 H_5)_3$	(CO) ₂ MnC ₅ H ₅ As(OC ₆ H ₅) ₃	$(CO)_2MnC_5H_5Sb(C_6H_5)_3$

a endo, cis·Bicyclo[2,2,1]·5 heptene-2,3·dicarboxylic anhydride. b 1,2,3,6·tetrahydrophthalic anhydride.

241,242] correlated the ⁵⁵Mn quadrupole coupling constants to σ-constants of the substituents on the cyclopentadienyl ring (eqn. 33).

$$A = A_0 + \alpha \sigma_1 + \beta \sigma_R \tag{33}$$

where

 $A = e^2 Qq/h \text{ or } \nu(\pm 3/2 \rightarrow \pm 5/2)$

 $\sigma_{\rm I}$, $\sigma_{\rm R}$ = induction and conjugation constants of the substituents

and α , β = coefficients which determine the transmission properties of a system in relation to the induction and conjugation influence of the substituent.

The results show [241] that in this system of compounds, the influence of a substituent is transmitted to the metal from the cyclopentadienyl ring in accordance with a conjugative mechanism. The asymmetry parameters for the compounds in which the substituents are of the type COR (R = CH₃, CF₃ or C_6H_5) are appreciably greater than the asymmetry parameter for C_5H_5 -Mn(CO)₃. This has been explained [241] as due either to a direct interaction of the substituent with the metal atom giving rise to a distortion of the ideal structure of the molecule C_5H_5 Mn(CO)₃, or to a fulvene-like rearrangement of the cyclopentadienyl ring. Temperature dependence of the ⁵⁵Mn NQR frequencies in π -pyrrolenylmanganesetricarbonyl and π -cyclopentadienylmanganesetricarbonyl suggest [243] that the pyrrolenyl-manganese bond is significantly distorted via a pyrrole slippage. Thus, the pyrrolenyl-manganese bond might be described [243] as a four-electron metal-heterocyclic allylic and two-electron metal-olefin bond.

Effect of substitution in the cyclopentadienyl ring on the ⁵⁵Mn NQR in the complexes of the series $RC_5H_4Mn(CO)_3$ has also been studied by Brill and Long [220]. The resonance frequencies and hence the coupling constants of Mn^I increase as the ring becomes electron rich. This has been explained [220] as due to the electronic polulation of d-orbitals, the population of d_{z^2} , d_{xz} and d_{yz} being greater than that of $d_{x^2-y^2}$ and d_{xy} orbitals in these compounds. Substitution of a CO group by another ligand such as $(C_6H_5)_3$ -Sb sharply raises the asymmetry parameter and changes the coupling constant considerably at the manganese site [244].

In compounds of the type π -C₅H₅Mn(CO)₂L where L is a cycloolefin, η decreases in the order, cis-cyclooctene, cyclopentene and cycloheptene [245]. This order parallels an increase in the olefin ring strain; as the strain increases, the strength of the manganese—olefin bond, which acts to relieve the strain, increases [245]. When L is a group V donor atom derivative, the frequencies roughly parallel the σ -donor and π -acceptor abilities of the ligands. For example, the trend in resonance frequencies for phosphorus donor ligands, viz., $P(OC_6H_5)_3 > P(C_6H_5)_3 > P(alkyl)_3$, parallels the π -acceptor ability of the ligand and the reverse is the trend for the σ -donor ability.

In compounds of the type $[(CH_3)_n C_6 H_{6-n} Mn(CO)_3]^+$, changes in size,

symmetry and charge density of the anion produce a variation of about 3% in 55 Mn coupling constant [246]. The lattice effects in these compounds seem to be about the same magnitude as those found in organic compounds and smaller than those in hexahalometallates. The 55 Mn ($^{\pm}3/2 \rightarrow ^{\pm}5/2$) transition frequencies for the Br $_3$ and I $_3$ salts of [(CH $_3$) $_n$ C $_6$ H $_6$ - $_n$ Mn(CO) $_3$] † correlate linearly with the number of methyl groups on the aromatic ring [246].

H. Rhenium-185 and rhenium-187 resonances

¹⁸⁵Re and ¹⁸⁷Re NQR frequencies in Re₂(CO)₁₀ have first been observed by Segel and Barnes [247]. The large asymmetry parameter observed in this compound has been explained in terms of both anisotropic vibration [248] and electronic configuration [249]. The increase in the asymmetry parameter from 63% at 26.5°C to 88% at liquid nitrogen temperature has been explained by Harris [248] in terms of large anisotropic vibrations which leave q_z relatively unaffected both in direction and in magnitude but affect q_{xx} and q_{yy} in such a way as to make q_{yy}/q_{xx} much larger than 1. The increase in η at low temperature is due to decrease in motion in both x and y directions but a greater decrease in the x-direction. On the other hand, Segel and Anderson [249] attribute the increase in η with decreasing temperature to a rearrangement of the orbital configuration so as to allow one of the components of the EFG tensor to increase to a value almost equal to q_{zz} . In fact, extrapolation of the η versus temperature curve does predict a value of $\eta = 100\%$ at about 0 K. It is interesting to note that the forbidden transition $(\mp 1/2 \rightarrow \pm 5/2)$ of ¹⁸⁵Re and ¹⁸⁷Re has been observed [241] in this system (71.51 and 75.45 MHz respectively at 77 K).

Nesmayanov et al. [241,242] have studied the ¹⁸⁵Re and ¹⁸⁷Re NQR in substituted π -cyclopentadienylrheniumcarbonyl compounds. The η values are greater in these compounds than in the corresponding manganese compounds. Comparison of e^2Qq values for ⁵⁵Mn and ¹⁸⁷Re in similar compounds indicates that the EFG at the Re nucleus is about twice as large as that at the Mn nucleus.

I. Antimony-121 and antimony-123 resonances

¹²¹Sb and ¹²³Sb NQR in a number of Menshutkin complexes based on Sb-Cl₃ have been reported [172,174,176—178,180,229,232,250—252]. Generally the asymmetry parameter, η , at the antimony site is found to be 10—15% in these complexes except in SbCl₃ · C₆H₅NH₂ which has η = 3% [253]. This low η for SbCl₃ · C₆H₅NH₂ has been attributed to fortuitous balancing of EFG components from the external atoms as a result of their arrangement. A considerable change in η has been associated with a distortion of shape of SbCl₃ and SbBr₃ pyramids in their complexes with aromatic hydrocarbons. ¹²¹Sb and ¹²³Sb coupling constants in a few of the Menshutkin complexes based on SbCl₃ and SbBr₃ indicate that the complexes are formed mainly through the π -electrons of the benzene ring. Zemmukhova et al. [196] have

reported ¹²¹Sb and ¹²³Sb resonances in a number of oxalatofluoride and nitratofluoride complexes of Sb^{III} such as $K_2Sb_2(C_2O_4)F_6$ and $K_3Sb_2(NO_3)_2F_7$.

¹²¹Sb and ¹²³Sb resonances in SbCl₅ · POCl₃ and SbCl₅ · CH₃CN have been observed by Schneider and Dilorenzo [271]. In SbCl₅ · POCl₃, the ¹²¹Sb and ¹²³Sb resonances are consistent with an unusually large η and the temperature dependence of ¹²¹Sb and ¹²³Sb resonances indicates a large axial anisotropy in the x direction (lowest EFG direction).

J. Cobalt-59 resonances [254]

Hartman et al. [200,201] have studied the 59Co, 35Cl and 37Cl NQR in trans-[Co(en)₂Cl₂]Cl · HCl · 2H₂O. The quadrupole coupling constant and η at the cobalt site have been shown to be 71.73 MHz and 0.222 respectively. Using the Townes-Dailey procedure, they have calculated an ionic character of 75-80% for the Co-Cl bond in this complex. Watanabe and co-workers [198,204,255,256] have studied ⁵⁹Co NQR in a number of cobalt-ammine complexes. The coupling constants for the compounds (Table 12) of the type [Co(NH₃)₅Cl]Cl₂ (33.71 MHz) are about half those for the corresponding praseo salts such as trans-[Co(NH₃)₄Cl₂]Cl (59.23 MHz) and trans-[Co(en)₂Cl₂] Cl (60.63 MHz). Comparison of the coupling constants of cis and trans-dichlorobisethylenediaminecobalt(III) complexes has shown that e^2Qq in the cis complexes are considerably smaller than those for the trans complexes and are comparable to those for [Co(NH₃)₅Cl]²⁺ complexes. Large variation in ⁵⁹Co coupling constants have been observed in trans-[Co(en),Cl₂]⁺ complexes when the anion is changed. For example, on going from trans-[Co(en)₂Cl₂]Cl to trans-[Co(en)₂Cl₂]Cl · HCl · 2H₂O, the ⁵⁹Co e²Qq increases by about 15% and on going from trans-[Co(en)2Br2]ClO4 to trans-[Co(en)2-Br₂]Br · HBr · 2H₂O there is an increase of ca. 25% in the ⁵⁹Co e^2Qq [199]. The lower value of ⁵⁹Co e^2Qq in trans-[Co(tn)₂Cl₂]Cl·HCl·2H₂O compared to trans-[Co(en),Cl, Cl · HCl · 2H,O has been attributed by Brill and Hugus [203] to the difference in the interaction of the carbon atom with the cobalt valence electrons in the two compounds considered.

La Rossa and Brown [197] have studied a number of Co^{III} complexes, known as cobaloximes, of the type $Co(dh)_2L'L''$ (dh = dimethyl glyoximatomono anion; $L',L''=Cl^-$, Br^- , NC_5H_5 , $(C_6H_5)_3P$, $(OCH_3)_3P$, $(n-C_4H_9)_3P$, $(C_6H_5)_3As$ etc.). The ⁵⁹Co NQR data for these complexes have been analysed in terms of a partial field gradient model. Good agreement with the experimental results could be obtained only when it is assumed that the partial field gradient tensor parameter for the equatorial ligand nitrogen becomes more positive as the axial ligand contribution increases in such a way that the total field gradient is approximately constant [197].

A large number of investigations (Table 13) have been carried out on dicobaltoctacarbonyl, $Co_2(CO)_8$, and its various substituted complexes [217–219,222,240,258–264]. From the pure quadrupole resonance of ⁵⁹Co in $Co_2(CO)_8$, two e^2Qq (90.19 and 89.30 MHz at 77 K), which are almost equal for the two cobalt sites, and two η values (31 and 48% respectively), which are considerably different, have been obtained [240,262]. The asymmetry

TABLE 12 Cobalt-59 NQR parameters for some cobalt(III) amine complexes

Compound	v(±1/2→±3/2) (MHz)	v(±3/2→±5/2) (MHz)	$v(\pm 5/2 \rightarrow \pm 7/2)$ (MHz)	7 (%)	e ² Qq/h (MHz)	Tempera- ture ^a (°K)	Ref.
trans-[CoCl ₂ (NH ₃) ₄]Cl	(4.531)	8.370	12.665	13.6	59.23	R.T.	255
trans-[CoCl ₂ (en) ₂]Cl	5.367	8.368	12.893	27.2	60.63	R.T.	255
trans-[CoCl ₂ (en) ₂]Br	4.890	8.405	12.821	20.4	80.09	R.T.	198
trans-[CoCl ₂ (en) ₂]I	4.528	8.238	12.485	15.6	58.41	R.T.	198
trans-[CoCl ₂ (en) ₂]SCN		8.395	12.870	24.5	60.43	296	199
trans-[CoCl ₂ (en) ₂]ClO ₄	4.601	8.452	12,798	14.8	59.86	R.T.	198,
	4.614	8.494	12.858	14.6	60.14		199
trans-[CoCl ₂ (en) ₂]NO ₃	4.777	8.877	13.426	13.2	62.78	R.T.	255
trans-[CoCl ₂ (en) ₂]BrO ₃	ı	9.057	13.880	23.8	65.15	296	199
trans-[CoCl ₂ (en) ₂]Cl·HCl·xH ₂ O	5.979	10,001	15.296	22.2	71.73	R.T.	199,
							200
trans-[CoCl ₂ (tn) ₂]Cl·HCl·2H ₂ O	4.683	8.691	13,137	13.2	61.41	298	203
trans-[CoBr2(en)2]Br	(5.117)	8.392	12.860	23.5	60.36	R.T.	255
trans-[CoBr ₂ (en) ₂]Br · HBr · 2H ₂ O	. 1	10.104	15.503	24.4	72.80	R.T.	200
trans-[CoBr ₂ (en) ₂]ClO ₄	***	8.096	12.264	14.9	57.38	296	199
cis-[CoCl ₂ (en) ₂]Cl·H ₂ O	3.168	4.980	7.668	26.8	36.05	R.T.	256
cis-[CoCl ₂ (en) ₂]NO ₃	2.654	4.741	7.201	17.3	33.71	R.T.	256
[CoCl(NH ₃) ₅]Cl ₂	2.733	4.399	6.758	25.1	31.74	R.T.	204
$[CoCl(NH_3)_5]SO_4 \cdot H_2SO_4$	2.405	4.773	7.161	4.0	33.43	R.T.	204
	2.526	4.892	7.364	8.9	34.39		
Annie de la company de la comp	S			-			-

a R.T. = Room temperature.

TABLE 13 Cobalt-59 NQR data for a few derivatives of cobalt carbonyl

Compound ^a	Tempera- ture (°K)	ν(±1/2→±3/2) (MHz)	v(±3/2→±5/2) (MHz)	v(±5/2→±7/2) (MHz)	e ² Qq/h (MH2)	7 (%)	Ref.
Co ₂ (CO) ₈	11	8.417	12.334	19.132	90.18	31.49	262,
Cl ₃ SiCo(CO) ₄	298	10,344	18.500	27.960	89.30 130.70	3.0	259,
Cl. SiCo(CO), P(n.C.H.),	868	ı	16.970	94.400	113 90	c	217 959
(C ₆ H ₅) ₃ SiC ₀ (CO) ₄	298	***	14,434	21.662	101.09	0	259
Cl ₃ GeCo(CO) ₄	303	11,443	22.741	34,140	159.33	3.9	217
		11,571	23.055	34.598	161.476	3.0	
Br ₃ GeCo(CO) ₄	298	1	22.918	34.573	161.340	12.0	217
$I_3GeCo(CO)_4$	298	******	22.694	34.078	159.080	4.0	217
$(C_6H_5)_3$ GeCo $(CO)_4$	300	position	15,641	22.486	1.09.630	5.0	258
Cl ₃ GeCo(CO) ₄ PBu ₃	298	ŧ	23.710	35.560	1.66.000	0	259
$Cl_3GeCo(CO)_4P(C_6H_5)_3$	298		22.310	33.580	1.56.90	œ	259
			22.320	33.600	156.80	œ	
$(C_6H_5)_3GeC_0(CO)_3P(OC_6H_5)_3$	300	9.67	15.664	24.065	113.02	25	258
Cl2Ge[Co(CO)4]2	298	photon	22.200	33.340	155.60	₹	218
			20.400	30.990	145.00	17	
Cl ₃ SnCo(CO) ₄	298	11.675	23.380	35.020	163.40	0	217
Br ₃ SnCo(CO) ₄	298	11.650	22.790	34.269	159,91	တ	217
$I_3SnCo(CO)_4$	298	11.052	21.815	32.786	153.04	9	217
$(C_6H_5)_3SnCo(CO)_4$	298	-	14.852	22.304	104.11	ιņ	217
(C ₆ H ₅ CH ₂) ₃ SnC ₀ (CO) ₄	300	1	14.24	21.51	100.4	15	265
$(CH_3)_3SnCo(CO)_4$	298	**	13.810	20.730	96.80	ಣ	218
				20.470			
$Cl_3SnCo(CO)_3P(OC_6H_5)_3$	300	ı	22.768	34.167	159.46	က	258
$(CH_3)_3SnCo(CO)_3P(OC_6H_5)_3$	300	**************************************	14.830	22,259	103.88	က	258
Cl ₃ SnCo(CO) ₃ PBu ₃	300	I	24.800	37.190	173.60	0	217
$(C_6H_5)_3SnCo(CO)_3P(OCH_3)_3$	300	· ·	14.871	22.322	104.19	₹*	258
$(C_6H_5)_3SnC_0(CO)_3P(OC_6H_5)_3$	300		15,264	23.491	110.44	27	258

(C ₆ H ₅) ₃ SnCo(CO) ₃ PBu ₃	338	ı	14.727	22.107	103.18	4	258
12Sn[Co(CO)4]2 "	298	i	21.250	31.940	149.00	9 ;	218,
			20.480	30.940	144.60	13	219
Cl ₂ Sn[Co(CO) ₄] ₂ °	298	10.81	21.640	32.490	151,60	0	218
		10.46	19.580	28.580	138.20	12	
$\operatorname{Br}_2\operatorname{Sn}[\operatorname{Co}(\operatorname{CO})_4]_2$	298	1	20.980	31.640	148.00	16	218
			20.610	31.090	145.10	0	
$(CH_3)_2Sn[Co(CO)_4]_2$	298	8.15	15.260	22.650	105.70	0	218
C ₆ H ₅)ClSn[Co(CO) ₄] ₂	298	i	18.356	27.500	128.40	ಬ	219
			18.100	27.250	126.90	6	
$(C_6H_5)_2Sn[Co(CO)_4]_2$	298	•	16.075	24.219	113,10	တ	219
			16.030	24.089	112.70	9	
ClSn[Co(CO)4]3	298	1	19.480	29.340	135.90	6	218
			18,890	28.400	132.60		
BrSn[Co(CO)4]3	298	1	18.82	28.47	133.0	14	218
(CH ₃)Sn[Co(CO) ₄] ₃	298	1	17.80	26.70	124.6	0	218
			17.56	26.47	122.5	0	
			17.22	25.77	120.2	0	
			16.97	22.57	119,3	10	
			16.66	25.34	118.6	18	
$(C_6H_5)_3SnCo(CO)_2[P(OCH_3)_3]_2$	300	10.496	14.088	22.017	104.20	37	258
C_6H_5) ₃ SnCo(CO) ₂ [P(OC ₆ H ₅) ₃] ₂	300	I	12.499	19.798	95.40	55	258
Sn[Co(CO) ₄] ₄	298	1	18.470	27.69	129.2	0	218
$(C_6H_5)_3P_b[C_0(CO)_4]$	298	1	15.806	23.741	110.82	ស	217
C_6H_5) ₃ PbCo(CO) ₃ P(OC ₆ H ₅) ₃	300	i	16.656	25.599	120.28	56	258
Hg[Co(CO) ₄] ₂	298	l	15.99	24.000	112.0	ល	218
			15.81	23.75	110.8	0	
$Hg[Co(CO)_3P(OC_6H_5)_3]_2$	300	1	15.844	24.387	114.65	27	258
			15.243	22.901	106.81	9	
$C_0(CO)_3P(C_6H_5)_3$]2	298	1	20.96	31.46	146.8	0	217
$C_0(CO)_3P(OC_6H_5)_3]_2$	273	11.219	22.281	33,440	156.10	4	263
Co(CO) ₃ P(OCH ₃) ₃] ₂	273	10,372	20.573	30.868	144.08	4.6	263
Co(CO) ₃ P(OC ₂ H ₅) ₃] ₂	273	10,169	20.232	30.249	141.674	2.6	263
Co(CO)3PBu312	273	10.163	20.170	30.272	141.291	ა ზ	263
$C_0(CO)_4]C_0(CO)_3[P(C_6H_5)_3]_2$	298	1	22.77	34.20	159.7	rc	217
Co(CO)3[P(C6H5)3]2B(C6H5)4	293	-	22.006	33.641	157.75	22	260

TABLE 13 (continued)

Compound	Tempera- ture (°K)	v(±1/2→±3/2) (MHz)	v(±3/2→±5/2) (MH2)	v(±5/2→±7/2) (MHz)	e² Qq/h (MHz)	ກ (%)	Ref.
Co(CO) ₃ [P(OCH ₃) ₃] ² B(C ₆ H ₄) ² Co(CO) ₃ [P(OCH ₃) ₃] ² B(C ₁ H ₃) ² Co(CO) ₃ [P(OCH ₃) ₃ Co(CH ₃) ² Co(CO) ₃ [P(OCH ₃) ₃ Co(CH ₃) ² Co(CO) ₃ [P(OCH ₃) ₃ Co(CH ₃) ² Co(CO) ₃ C	298	9.7	19.26	29.12 98 56	136.1	13	260
Co[P(OCH3)3]3B(C6118)4 Co[P(OCH3)1]2B(C6H4)3	298	20.04	21.93	32.92	153,7	, 4 ^t	260
Co(CO)6(HC=CH)	273	10.530	11.109	17.584	84.655	54.3	264
		10.757	11.115	17.593	84.875	55.9	
Co(CO)6(Bu ^t C≡CH)	273	9.945	10,850	17.165	82.377	51.7	264
			10.805	17.064			
Co ₂ (CO) ₆ (HOCH ₂ C=CCH ₂ OH)	273	10,220	11.465	18.127	86.856	49.8	264
		10.798	11.263	17.826	86.043	55.7	
$C_{02}(CO)_6(\mathbb{F}_3C = C\mathbb{F}_3)$	273	10.003	8.396	13.091	64.746	73.8	264
) + 3 · · · · · · · · · · · · · · · · · ·		9.747	8.396	13.091	64.684	72.2	
		9.757	8.250	12.816	63.523	74.1	
		9.605	8.250	12.816	63.485	73.1	
Co ₂ (CO) ₆ (C ₆ H ₅ C=CC ₆ H ₅)	273	10.416	9.429	14.802	72.596	67.5	264
		11.173	10.144	15.936	78.101	67.1	
Co ₃ (CO) ₆ (f ₄ fars)	273	10.114	11.830	18,684	89.097	47.3	264
		10.564	11.940	18.870	90.306	49.2	
$Co_2(CO)_6(\pi \cdot C_7H_8)$	273	8,125	10.98	17.17	81.14	37.1	264
		7.75	11.31	17.55	82.74	31.8	
$Co_2(CO)_4(\pi \cdot C_7H_8)_2$	273	10.949	9.717	15.172	74.684	70.0	264
		10.793	9.485	14.873	73.212	69.7	

^a f₄fars = $(CH_3)_2$ AsC=C—As $(CH_3)_2$ CF₂CF₂; Bu^t = tertiary butyl; Buⁿ = n-butyl. ^b Powder from solution. ^c Sublimed.

parameter for the two sites approach each other with increasing temperature. Moobery et al. [262] have attributed the two different η values and their temperature dependence to the distortion of the regular octahedron around the two cobalt sites to different extents.

⁵⁹Co NQR spectra of a number of derivatives of $Co_2(CO)_8$ have been reported by Chia et al. [263,264]. The NQR parameters obtained for these complexes have been interpreted in terms of the electronic population in the d orbitals of the cobalt atom. For the alkyne complexes such as (RC \equiv CR')Co₂(CO)₆ (R = R' = H, CF₃, CH₂OH, C₆H₅; R = H; R' = C(CH₃)₃), e^2Qq and η values have been related to the electronegativities of R and R' and e^2Qq values have been found to be inversely proportional to η . Substantial differences in e^2Qq have also been observed with gross structural variations.

Brown et al. [217] have interpreted the variation in the EFG at the cobalt site in compounds of the type $MX_3Co(CO)_4$ (M = Si, Ge, Sn and Pb; X = Cl, Br, I and C_6H_5) in terms of σ and π bonding of MX₃ to the cobalt atom. The results show that the groups MX₃ which are poor donors and/or strong acceptors cause large ⁵⁹Co quadrupole coupling constants. ⁵⁹Co e²Qq values have also been used [217] in studying the electronic effects within the MX₃ group. For example, the low coupling constant for SiCl₃Co(CO)₄ compared to other MX₃Co(CO)₄ compounds is shown to indicate an extensive Si-Cl $d\pi$ - $p\pi$ bonding. In the series GeCl₃-, GeBr₃- and GeI₃Co(CO)₄, the essential constancy of the ⁵⁹Co coupling constants has been shown [217] to be due to variations in germanium—halogen π -bonding in the order Cl > Br > I. ⁵⁹Co NQR in a series of complexes derived from cobalt carbonyl and organotin (or organogermanium) compounds has been studied by Nesmeyanov et al. [222]. ⁵⁹Co coupling constants in these complexes increase with increasing electronegativity of the substituent on germanium or tin. 59 Co e^2Qq values correlate with inductive and conjugative constants of the substituents and this correlation was used [222] to show that in RR'₂SnCo(CO)₄, there exists some bond multiplicity in the Co-Sn bond.

Spencer et al. [218] have reported ⁵⁹Co NQR in compounds of the type $X_n Sn[Co(CO)_4]_{4-n}$ where X = Cl, Br or CH_3 and n = 0, 1, 2 or 3. The e^2Qq values have been analysed in terms of the population of 3d as well as 4p orbitals. ⁵⁹Co e^2Qq in these complexes increases on increasing the value of n when X = Cl or Br and decreases on increasing the value of n when $X = CH_3$. It has been shown [218] that the e^2Qq values at the cobalt site correlate smoothly with the highest frequency CO stretching vibration (in hexane) of these compounds. Analysis of the coupling constants suggests that chlorine is relatively strongly π -bonded towards tin in these compounds than bromine. Pribula et al. [260] have calculated e^2Qq for the complexes $[M(CO)_{5-x}P_x]^n$ where P is $P(C_6H_5)_3$ or $P(OCH_3)_3$ and M is Mn (n = -1), Fe (n = 0) or Co (n = 1) in different electronic configurations using SCF atomic wave-functions. Comparison of the calculated e^2Qq with observed e^2Qq indicates [260] that the radial orbitals of the central metal ion become more populated compared to the axial orbitals with increased charge on the central metal ion.

Boyd and Brown [258] have studied ⁵⁹Co NQR in compounds of the type $XCo(CO)_2L_2$ where X is $Sn(C_6H_5)_3$ or other similar group IV metal derivatives and L is $P(n-C_4H_9)_3$, $P(OCH_3)_3$, $P(OC_2H_5)_3$ or $P(OC_6H_5)_3$. The σ -donor and π -acceptor characteristics of the ligand L play an important role in deciding the ⁵⁹Co coupling constant in these complexes. Axial substitution does not markedly change the e^2Qq at cobalt when both axial ligands are of π -acceptor character [258].

Harris [257] has observed the ⁵⁹Co NQR in $Cs[(1,2-B_9C_2H_{11})_2Co]$ and explained the coupling constant in terms of the bonding of the $[1,2-B_9C_2H_{11}]^{2-}$ moiety to Co^{III} . The 1,2 carbons and the 4,7,8 borons are pratically identical in their bonding to Co^{III} .

K. Niobium-93 resonances

NQR of ⁹³Nb in [(CH₃)₄N]₂[(Nb₆Cl₁₂)Cl₆] has been observed at room temperature by Edwards et al. [137]. An approximate population analysis for electrons in [Nb₆Cl₁₂]⁴⁺ cluster has shown [137] that fourteen electrons are available for metal—metal bond as predicted by theory. ⁹³Nb NQR in NbF₅ and a number of its adducts have been reported [266]. NQR data for these complexes are consistent with low values for η at the niobium nucleus. The interaction of XeF⁺ and NbF₅ or Nb₂F₁₁ ions in XeF₂ · NbF₅ complexes has been discussed [266] in terms of the point charge model.

L. Indium-115 resonances

 115 In NQR in (NH₄)₂ InCl₅ · H₂O has been studied by Carr et al. [267] as a function of temperature. The 115 In resonance in this complex shows an unusually large temperature dependence and the value shows a linear decrease with decrease in temperature. Analysis of both 115 In and 35 Cl NQR data in this complex indicates that the complex is predominantly ionic with greater covalent character in the indium—water bond than in the indium—chlorine bond.

¹¹⁵In NQR parameters as well as those for ⁷⁵As and ¹²³Sb in the 1:1 complexes of $(CH_3)_3$ In with $(CH_3)_3$ N, $(CH_3)_3$ P, $(CH_3)_3$ As and $(CH_3)_3$ Sb are consistent with a small $d\pi$ — $p\pi$ bonding between $(CH_3)_3$ In and $(CH_3)_3$ P and its heavier congeners [235].

M. Bismuth-209 resonances

Guryanova and co-workers [268,269] have studied the ²⁰⁹Bi NQR in a number of complexes of BiCl₃ with different π -donors such as CH₃OC₆H₅, CH₃OCH₃ and CH₃CN. The variations in e^2Qq and η in these complexes dependent mainly on the geometry of the complexes. The value of η in these complexes varies from 14% to 34% with the distortion of BiCl₃ being greater than that in similar complexes of SbCl₃. Bi-209 NQR in the complex AlBr₃ · BiBr₃ has also been reported [113].

ACKNOWLEDGEMENT

L.R. and V.S.S.S. thank the authorities of the Indian Institute of Science, Bengalore for fellowships.

IV. REFERENCES

- 1 H. Schuler and T. Schmidt, Z. Phys., 94 (1935) 457.
- 2 H.G. Dehmelt and H. Kruger, Naturwissenschaften, 37 (1950) 111.
- 3 H. Kruger and U. Meyer-Berkhout, Z. Phys., 132 (1952) 171.
- 4 H.G. Dehmelt, Am. J. Phys., 22 (1954) 110.
- 5 M.H. Cohen and F. Reif, Solid State Phys., 5 (1957) 321.
- 6 W.J. Orville-Thomas, Q. Rev. (London), 11 (1957) 162.
- 7 G.K. Semin and E.I. Fedin, J. Struct. Chem. (USSR), (English translation) 1 (1960) 252; 460.
- 8 C.T. O'Konski, in F.C. Nachod and W.D. Phillips (Eds.), Detection of Organic Structures by Physical Methods, Vol. 2, Academic Press, New York, 1961, p. 661.
- 9 E.A.C. Lucken, Phys. Methods Heterocyclic Chem., 2 (1963) 89.
- 10 G.A. Jeffrey and T. Sakurai, in H. Reiss (Ed.), Progress in Solid State Chemistry, Vol. 1, MacMillan (Pergamon), New York, 1964, p. 380.
- 11 M. Kubo and D. Nakamura, Adv. Inorg. Chem. Radiochem., 8 (1966) 257.
- 12 H.D. Schultz, in C.N.R. Rao and J.R. Ferraro (Eds.), Spectroscopy in Inorganic Chemistry, Vol. I, Academic Press, New York, 1970, p. 301.
- 13 H. Sillescu, in H.A.O. Hill and P. Day (Eds.), Physical Methods in Advanced Inorganic Chemistry, Interscience, London, 1968, p. 434.
- 14 E. Schempp and P.J. Bray, in D. Henderson (Ed.), Physical Chemistry An Advanced Treatise, Vol. IV, Academic Press, New York, 1970, p. 522.
- 15 W. Van Bronswyk, Struct. Bonding, 7 (1970) 87.
- 16 M.G. Voronkov and V.P. Feshin, in F.C. Nachod and J.J. Zuckerman (Eds.), Determination of Organic Structures by Physical Methods, Vol. 5, Academic Press, New York, 1973, p. 163; 323.
- 17 R.S. Drago, Physical Methods in Inorganic Chemistry, Reinhold, New York, 1965, p. 315.
- 18 J.A.S. Smith, J. Chem. Educ., 48 (1971) 39.
- 19 T.P. Das and H.L. Hahn, in F. Seitz and D. Turnbull (Eds.), Solid State Physics, Supplement 1, Academic Press, New York, 1958.
- 20 E.A.C. Lucken, Nuclear Quadrupole Coupling Constants, Academic Press, New York, 1969.
- 21 C.P. Slichter, Principles of Magnetic Resonance, Harper and Row, New York, 1964, Chap. 6.
- 22 R. Livingston and H. Zeldes, Table of Eigenvalues for Pure Quadrupole Spectra, Spin 5/2, ORNL Report 1913, Oak Ridge National Laboratory, Oak Ridge, Tenn., 1955; S.L. Segel and R.G. Barnes, Catalogue of Nuclear Quadrupole Interaction and Resonance Frequencies in Solids, USAEC Report, IS-520, Parts I and II, 1962.
- 23 M.H. Cohen, Phys. Rev., 96 (1954) 1278.
- 24 R. Bersohn, J. Chem. Phys., 20 (1952) 1505.
- 25 N. Inoue, J. Sci. Hiroshima Univ., Ser. A-II: Phys. Chem., 24 (1960 7.
- 26 H. Bayer, Z. Phys., 130 (1951) 227.
- 27 T. Kushida, J. Sci. Hiroshima Univ., Ser. A: Maths. Phys. Chem., 19 (1955) 327.
- 28 T. Kushida, G.B. Benedek and N. Bloembergen, Phys. Rev., 104 (1956) 1364.
- 29 R.J.C. Brown, J. Chem. Phys., 32 (1960) 116.
- 30 I. Ichishima, J. Chem. Soc. Japan, Pure Chem. Sec., 71 (1950) 607.
- 31 V. Rehn, J. Chem. Phys., 38 (1963) 749.

- 32 Y. Morino and M. Toyama, J. Phys. Soc. Japan, 15 (1960) 288; J. Chem. Phys., 35 (1960) 1289.
- 33 M. Toyama, J. Phys. Soc. Jpn., 14 (1959) 1727.
- 34 P.C. Taylor, J.F. Baugher and H.M. Kriz, Chem. Rev., 75 (1975) 203.
- 35 H.R. Brooker and R.B. Creely, J. Chem. Phys., 61 (1974) 3658.
- 36 C.H. Townes and B.P. Dailey, J. Chem. Phys., 17 (1949) 782; 20 (1952) 35; 23 (1955) 118; Phys. Rev., 78 (1950) 346.
- 37 F.A. Cotton and C.B. Harris, Proc. Nat. Acad. Sci. U.S.A., 56 (1966) 12; Inorg. Chem., 6 (1967) 376.
- W. Gordy, J. Chem. Phys., 22 (1954) 1470; Discuss. Faraday Soc., 30 (1955) 561;
 M. Rinneburg, H. Haas and H.J. Hartman, J. Chem. Phys., 50 (1969) 3064; M.A.
 Whitehead and H.H. Jaffe, J. Chem. Phys., 34 (1961) 2204; Trans. Faraday Soc., 57 (1961) 1854; Theor. Chim. Acta, 1 (1963) 209.
- 39 R. Bersohn and R.G. Shulman, J. Chem. Phys., 45 (1966) 2298.
- 40 R. Bersohn, J. Chem. Phys., 29 (1958) 326.
- 41 R. Sternheimer, Phys. Rev., 80 (1950) 102; 84 (1951) 244; 86 (1952) 316; 95 (1954) 736.
- 42 D. Nakamura, Y. Kurita, K. Ito and M. Kubo, J. Am. Chem. Soc., 82 (1960) 5783.
- 43 K. Ito, D. Nakamura, Y. Kurita, K. Ito and M. Kubo, J. Am. Chem. Soc., 83 (1961) 4526.
- 44 D. Nakamura, K. Ito and M. Kubo, J. Am. Chem. Soc., 84 (1962) 163.
- 45 D. Nakamura, K. Ito and M. Kubo, Inorg. Chem., 1 (1962) 592.
- 46 K. Ito, D. Nakamura and M. Kubo, Bull. Chem. Soc. Japan, 35 (1962) 518.
- 47 D. Nakamura, K. Ito and M. Kubo, Inorg. Chem., 2 (1963) 61.
- 48 K. Ito, D. Nakamura, K. Ito and M. Kubo, Inorg. Chem., 2 (1963) 690.
- 49 D. Nakamura, K. Ito and M. Kubo, Proc. Int. Symp. Mol. Struct., Spectros., Tokyo, 1962 (D222); Chem. Abstr., 61 (1964) 1411h; 58 (1963) 4137d.
- 50 R. Ikeda, D. Nakamura and M. Kubo, Bull. Chem. Soc. Japan, 36 (1963) 1056.
- 51 D. Nakamura, Bull. Chem. Soc. Japan, 36 (1963) 1662.
- 52 D. Nakamura and M. Kubo, J. Phys. Chem., 68 (1964) 2986.
- 53 R. Ikeda, D. Nakamura and M. Kubo, J. Phys. Chem., 69 (1965) 2101.
- 54 R. Ikeda, A. Sasane, D. Nakamura and M. Kubo, J. Phys. Chem., 70 (1966) 2926.
- 55 D. Nakamura, Kagaku To Kogyo (Tokyo), 19 (1966) 816; Chem. Abstr., 65 (1966) 11577e.
- 56 A. Sasane, D. Nakamura and M. Kubo, J. Magn. Reson., 3 (1970) 76.
- 57 M. Kubo and D. Nakamura, Colloq. Int. C. N. R. S., 191 (1970) 117; Chem. Abstr., 77 (1972) 81770 r.
- 58 A. Sasane, T. Tanaka, A. Toba, Y. Kume, D. Nakamura and M. Kubo, Chem. Lett., (1973) 783.
- 59 W.A. Welsh, T.B. Brill, P.T. Thomson, R.H. Wood and R.C. Gearhart, Inorg. Chem., 13 (1974) 1797.
- 60 J.D. Graybeal, R.J. McKown and S.D. Ing, J. Phys. Chem., 74 (1970) 1814.
- 61 T.L. Brown, W.G. McDugle, Jr. and L.G. Kent, J. Am. Chem. Soc., 92 (1970) 3645.
- 62 P. Machmer, Z. Naturforsch, Teil B, 24 (1969) 193.
- 63 P. Machmer, Angew. Chem., Int. Ed., Engl., 8 (1969) 137.
- 64 P.J. Cresswell, J.A. Fergusson, B.R. Penfold and D.E. Scaife, J. Chem. Soc. (Dalton), (1972) 254.
- 65 T.B. Brill, Z.Z. Hugus and A.F. Schreiner, J. Phys. Chem., 74 (1970) 2999.
- 66 P.W. Smith and R. Stoessiger, Mol. Phys., 17 (1969) 503.
- 67 T.B. Brill, Z.Z. Hugus and A.F. Schreiner, J. Phys. Chem., 74 (1970) 469.
- 68 T.L. Brown and L.G. Kent, J. Phys. Chem., 74 (1970) 3572.
- 69 T.B. Brill and W.A. Welsh, J. Chem. Soc. (Dalton), (1973) 357.
- 70 T.B. Brill, R.C. Gearhart and W.A. Welsh, J. Magn. Reson., 13 (1974) 27.
- 71 T.B. Brill, J. Chem. Phys., 61 (1974) 424.

- 72 D. Nakamura, R. Ikeda and M. Kubo, Coord. Chem. Rev., 17 (1975) 281.
- 73 G.P. O'Leary and R.G. Wheeler, Phys. Rev. B, 1 (1970) 4409.
- 74 G.P. O'Leary, Phys. Rev. Lett., 23 (1969) 782.
- 75 R.L. Armstrong, J. Magn. Reson., 20 (1975) 214.
- 76 K.R. Jeffrey, J. Magn. Reson., 7 (1972) 184.
- 77 K.R. Jeffrey and R.L. Armstrong, Phys. Rev., 174 (1968) 359.
- 78 R.L. Armstrong and K.R. Jeffrey, Can. J. Phys., 47 (1969) 1095.
- 79 R.L. Armstrong and D.F. Cooke, Can. J. Phys., 47 (1969) 2165.
- 80 R.L. Armstrong, G.L. Baker and K.R. Jeffrey, Phys. Rev. B, 1 (1970) 2847.
- 81 D.F. Cooke and R.L. Armstrong, Can. J. Phys., 49 (1971) 2381.
- 82 R.L. Armstrong and H.M. Van Driel, Can. J. Phys., 50 (1972) 2048.
- 83 M. Wiszniewska and R.L. Armstrong, Can. J. Phys., 51 (1973) 781.
- 84 H.M. Van Driel, M. Wiszniewska, B.M. Moores and R.L. Armstrong, Phys. Rev. B, 6 (1972) 1596.
- 85 G.L. Baker and R.L. Armstrong, Can. J. Phys., 48 (1970) 1649.
- 86 K.R. Jeffrey, R.L. Armstrong and K.E. Kisman, Phys. Rev. B, 1 (1970) 3770.
- 87 R.L. Armstrong and G.L. Baker, Can. J. Phys., 48 (1970) 2411.
- 88 R.L. Armstrong, G.L. Baker and H.M. Van Driel, Phys. Rev. B, 3 (1971) 3072.
- 89 R.L. Armstrong, J. Chem. Phys., 54 (1971) 813.
- 90 C.A. Martin and R.L. Armstrong, J. Magn. Reson., 20 (1975) 411.
- 91 T.E. Hass and E.P. Marram, J. Chem. Phys., 43 (1965) 3985.
- 92 T.B. Brill and G.G. Long, J. Phys. Chem., 75 (1971) 1898.
- 93 A.J. Lindop, J. Phys. C, 3 (1970) 1984.
- 94 J.E. Ferguson and D.E. Scaife, Inorg. Nucl. Chem. Lett., 7 (1971) 987.
- 95 D.H. Current, J. Magn. Reson., 20 (1975) 259.
- 96 E. Cippolini, J. Owen, J.H.M. Thornley and C. Windsor, Proc. Phys. Soc. (London), 79 (1962) 1083.
- 97 J.H.E. Griffith, J. Owen and I.M. Ward, Proc. Roy. Soc. London, Ser. A, 219 (1953) 526.
- 98 J. Owen, Discuss. Faraday Soc., 19 (1955) 127.
- 99 J.H.E. Griffith and J. Owen, Proc. Roy. Soc. London, Ser. A, 226 (1956) 96.
- 100 C.K. Jørgensen, in V. Gutmann (Ed.), Halogen Chemistry, Vol. 1, Academic Press, London, 1967, p. 265.
- 101 H.W. de Wijn, J. Chem. Phys., 44 (1966) 810.
- 102 D. Nakamura, Y. Kurita, K. Ito and M. Kubo, J. Chem. Phys., 31 (1959) 1433.
- 103 D.E. Scaife, Aust. J. Chem., 24 (1971) 1753.
- 104 V.I. Pakhomov, P.M. Fedorov, I.M. Alymov, I.N. Ivanova-Korfini and G.K. Semin., Izv. Akad. Nauk SSSR, Ser. Fiz., 39 (1975) 2519; Chem. Abstr., 84 (1976) 98105v.
- 105 E.P. Marram, E.J. McNiff and J.L. Ragle, J. Phys. Chem., 67 (1963) 1719.
- 106 C.W. Fryer and J.A.S. Smith, J. Chem. Soc., A, (1970) 1029.
- 107 D.J. Merryman, P.A. Edwards, J.D. Corbett and R.E. McCarley, Inorg. Chem., 13 (1974) 1471.
- 108 H.E. Doorenbos, J.C. Evans and R.O. Kagel, J. Phys. Chem., 74 (1970) 3385.
- 109 J.V. DiLorenzo and R.F. Schneider, Inorg. Chem., 6 (1967) 766.
- 110 J.C. Evans and G.Y. Lo, Inorg. Chem., 6 (1967) 836.
- 111 D.E. Scaife, Aust. J. Chem., 23 (1970) 2205.
- 112 T. Okuda, K. Yamada, H. Ishihara and H. Negita, Chem. Lett., (1975) 785; Chem. Abstr., 83 (1975) 88230x.
- 113 O. Kh. Poleshchuk and Yu. K. Maksyutin, Teor. Eksp. Khim., 11 (1975) 406; Chem. Abstr., 83 (1975) 123710c.
- 114 T. Deeg and A. Weiss, Ber. Bunsenges. Phys. Chem., 79 (1975) 497.
- 115 I.M. Alymov, E.V. Bryukhova, A.N. Grigor'ev, L.M. Mikheeva and L.N. Komissarova, Izv. Akad. Nauk SSSR, Ser. Khim., (1975) 982; Chem. Abstr., 83 (1975) 88068a.
- 116 D.E. Scaife, Aust. J. Chem., 24 (1971) 1993.

- 117 D.E. Scaife, Aust. J. Chem., 24 (1971) 1753.
- 118 H. Kashiwagi, D. Nakamura and M. Kubo, J. Phys. Chem., 71 (1967) 4443.
- 119 R.D. Willet, J. Chem. Phys., 41 (1964) 2243.
- 120 R. Kind and J. Ross, Phys. Rev. B, 13 (1976) 45.
- 121 D.E. Scaife, Aust. J. Chem., 24 (1971) 1315.
- 122 A. Sasane, T. Matuo, D. Nakamura and M. Kubo, J. Magn. Reson., 4 (1971) 257.
- 123 A. Sasane, T. Matuo, D. Nakamura and M. Kubo, Bull. Chem. Soc. Japan, 43 (1970) 1908.
- 124 C. Caglioti, C. Furlani, F. Orestano and F.M. Capece, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis., Mat. Nat., 35 (1963) 10; Chem. Abstr., 60 (1964) 8803d.
- 125 D.E. O'Leary, E.M. Patterson, C.E. Schere and J.M. Williams, J. Chem. Phys., 55 (1971) 5629.
- 126 G.A. Bowmaker, L.D. Brockliss and E. Whiting, Aust. J. Chem., 26 (1973) 29.
- 127 J.E. Hynes, B.B. Garrett and W.G. Moulton, J. Chem. Phys., 52 (1970) 2671.
- 128 G.A. Bowmaker, L.D. Brockliss, L.D. Earp and E. Whiting, Aust. J. Chem., 26 (1973) 2593.
- 129 H. Bug, H. Hass, M. Feissner and H. Hartman, J. Chem. Phys., 55 (1971) 280.
- 130 A.K. Moskalev, Faizovye Perekhody Krist., 1975, 130. (Ed.) K.S. Aleksandrov, Akad. Nauk SSSR, Sib. Otd., Inst. Fiz. Krasnoyarsk, USSR; Chem. Abstr., 84 (1976) 157677h.
- 131 V.I. Pakhomov, P.M. Fedorov, I.M. Alymov, I.N. Ivanova-Korfini and G.K. Semin, Izv. Akad. Nauk SSSR, Ser. Fiz., 39 (1975) 2519; Chem Abstr., 84 (1976) 98105v.
- 132 K. Sagiswa, H. Kiriyama and R. Kiriyama, Chem. Lett., 12 (1975) 1285.
- 133 N. Tovberg-Jensen, J. Chem. Phys., 50 (1969) 589.
- 134 H.M. Van Driel, R.L. Armstrong and M.M. McEnnen, Phys. Rev. B, 12 (1975) 488.
- 135 H.M. Van Driel and R.L. Armstrong, Phys. Rev. B, 12 (1975) 839.
- 136 T.B. Brill, P.E. Garrou and G.G. Long, J. Inorg. Nucl. Chem., 33 (1971) 3285.
- 137 P.A. Edwards, R.E. McCarley and D.R. Torgensen, Inorg. Chem., 11 (1972) 1185.
- 138 J.P. Yesinowski and T.L. Brown, Inorg. Chem., 10 (1971) 1097.
- 139 W.J. Asker, D.E. Scaife and J.W. Watts, Aust. J. Chem., 25 (1972) 2301.
- 140 Yu. K. Maksyutin, E.N. Gur'yanova and G.K. Semin, Russ. Chem. Rev., 39 (1970) 334.
- 141 T.B. Brill, J. Inorg. Nucl. Chem., 32 (1970) 1869.
- 142 T.B. Brill and Z.Z. Hugus, Jr., J. Inorg. Nucl. Chem., 33 (1971) 371.
- 143 T.B. Brill and Z.Z. Hugus, Jr., Inorg. Chem., 9 (1970) 984.
- 144 D.B. Patterson, G.E. Patterson and A. Carnevale, Inorg. Chem., 12 (1973) 1282.
- 145 D. Biedenkapp and A. Weiss, Z. Naturforsch, Teil A, 19 (1964) 1518.
- 146 E.V. Bryukhova, N.S. Erdyneev and A.K. Prokof'ev, Izv. Akad. Nauk SSSR., Ser. Khim., (1973) 1895; Chem. Abstr., 79 (1973) 141294s.
- 147 L. Ramakrishnan, S. Soundararajan, V.S.S. Sastry and J. Ramakrishna, Nucl. Phys. Solid State Phys. Symp., Dept. At. Energy India, Part II, Solid State Phys., SDB 12 (1975).
- 148 A. Weiss, in J.A.S. Smith (Ed.), Advances in Nuclear Quadrupole Resonance, Vol. 1, Heyden, London, 1974, p. 1.
- 149 G. Sawitizki and H.G.V. Schnering, Chem. Ber., 107 (1974) 3266.
- 150 E.V. Bryukhova, N.S. Erdyneev and A.K. Prokof'ev, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 1895; Chem. Abstr., 79 (1973) 141294s.
- 151 T.A. Babushkina, O. Kh. Poleshchuk, Yu.K. Maksyutin, A.M. Alymov, S.D. Sokolov and E.I. Mikhailovskaya, Koord. Khim., 1 (1975) 1266; Chem. Abstr., 84 (1976) 24106z.
- 152 J.J.R. Frausto da Silva and R. Wootton, J. Chem. Soc., D, (1970) 403.
- 153 J.J.R. Frausto da Silva, L.F. Vilas Boas and R. Wootton, J. Inorg. Nucl. Chem., 33 (1971) 2029.
- 154 S. Ardjomand and E.A.C. Lucken, Helv. Chim. Acta., 54 (1971) 176.

- 155 D.F.R. Gilson, Can. J. Chem., 48 (1970) 1976.
- 156 M. Kaplansky and M.A. Whitehead, Can. J. Chem., 48 (1970) 697.
- 157 T.S. Srivastava, Curr. Sci., 37 (1968) 253.
- 158 D.A. Tong, J. Chem. Soc. D, (1969) 790.
- 159 J.C. Carter, R. Haran and G. Jugia, C.R. Acad. Sci., Ser. C, 282 (1976) 623; Chem. Abstr., 84 (1976) 187242e.
- 160 T. Deeg and A. Weiss, Ber. Bunsenges. Phys. Chem., 80 (1976) 2.
- 161 M.T. Rogers and J.A. Ryan, J. Phys. Chem., 72 (1968) 1340.
- 162 Y. Kume, D. Nakamura, M. Kubo and S. Onaka, J. Magn. Reson., 10 (1973) 58.
- 163 Yu. K. Maksyutin, E.N. Guryanova, E.A. Kravchenko and G.K. Semin, J. Chem. Soc., Chem. Commun., (1973) 429 and references therein.
- 164 A.I. Andreeva, I.Ya. Kuramshin, A.A. Muratova, D. Ya. Osokin, A.N. Pudovik and I.A. Safin, Izv. Akad. Nauk SSSR, Ser. Fiz., 39 (1975) 2590; Chem. Abstr., 84 (1976) 113896z.
- 165 T.B. Brill, J. Magn. Reson., 15 (1974) 395.
- 166 E.N. Guryanova, V.V. Puchkova and A.F. Volkov, Zh. Strukt. Khim., 15 (1974) 439; Chem. Abstr., 81 (1974) 84071g.
- 167 I.G. Orlov, K.K. Koshelev, O.Kh. Poleshchuk and Yu.K. Maksyutin, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 1915; Chem. Abstr., 81 (1974) 161789b.
- 168 T. Okuda, J. Sci. Hiroshima Univ., Ser. A: Phys. Chem., 35 (1971) 213.
- 169 M.Z. Yusupov, V.S. Grechishkin, A.T. Kozulin, V.P. Anferov and V.S. Verzilov, Org. Magn. Reson., 3 (1971) 515.
- 170 V.S. Grechishkin and M.Z. Yusupov, Zh. Fiz. Khim., 44 (1970) 2933; Chem. Abstr., 74 (1971) 59161j.
- 171 V.S. Grechishkin and M.Z. Yusupov, Opt. Spektrosk., 29 (1970) 804; Chem. Abstr., 74 (1971) 8156y.
- 172 V.S. Grechishkin, S.I. Gushchin and V.A. Shishkin, Zh. Strukt. Khim., 11 (1970) 145; Chem. Abstr., 72 (1970) 138202k.
- 173 Yu.K. Maksyutin, E.V. Bryukhova, G.K. Semin and E.N. Guryanova, Izv. Akad. Nauk SSSR, Ser. Khim., (1968) 2658; Chem. Abstr., 70 (1969) 721589a.
- 174 V.S. Grechishkin, I.A. Kyuntsel and Yu.I. Rozenberg, Radiospektrosk. Kvantovo-khim., Metody Strukt. Issled., (Ed. L.A. Izd. Blyumenfel'd), (1967) 236; Chem Abstr., 69 (1968) 101517d.
- 175 V.S. Grechishkin and I.A. Kyuntsel, Tr. Estevtv. Nauch. Perm. Univ., 11 (1966) 9; Chem. Abstr., 67 (1967) 77742j.
- 176 V.S. Grechishkin and I.A. Kyuntsel, Tr. Estevtv. Nauch. Inst. Pri. Permsk. Univ., 11 (1964) 119; Chem. Abstr., 62 (1965) 9957g.
- 177 V.S. Grechishkin and I.A. Kyuntsel, Opt. Spektrosk., 16 (1964) 161; Chem. Abstr., 61 (1964) 199d.
- 178 V.S. Grechishkin and I.A. Kyuntsel, Zh. Strukt. Khim., 5 (1964) 53; Chem. Abstr., 61 (1964) 3837a.
- 179 V.S. Grechishkin and I.A. Kyuntsel, Opt. Spektrosk., 15 (1963) 832; Chem. Abstr., 60 (1964) 7594c.
- 180 V.S. Grechishkin and I.A. Kyuntsel, Zh. Strukt. Khim., 4 (1963) 269; Chem. Abstr., 59 (1963) 3449c.
- 181 T. Okuda, H. Terao, O. Ege and H. Negita, Bull. Chem. Soc. Japan, 43 (1970) 2398.
- 182 T. Okuda, Y. Furukawa and H. Negita, Bull. Chem. Soc. Japan, 45 (1972) 2245.
- 183 T. Okuda, A. Nakao, M. Shiroyama and H. Negita, Bull. Chem. Soc. Japan, 41 (1968) 61.
- 184 H. Negita, T. Okuda and M. Kashima, J. Chem. Phys., 45 (1966) 1076.
- 185 D. Biedenkapp and A. Weiss, Z. Naturforsch, Teil B, 23 (1968) 172.
- 186 O.Kh. Poleshchuk, Yu.K. Maksyutin and I.G. Orlov, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 109; Chem. Abstr., 80 (1974) 102050k.
- 187 O.Kh. Poleshchuk and Yu.K. Maksyutin, Izv. Akad. Nauk SSSR, Ser. Fiz., 39 (1975) 2579; Chem. Abstr., 84 (1976) 187141w.

- 188 V.P. Makridin, E.V. Bryukhova and G.K. Semin, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 1414; Chem. Abstr., 79 (1973) 85348y.
- 189 M. Burgard and E.A.C. Lucken, J. Mol. Struct., 14 (1972) 397.
- 190 I.P. Goldshtein, E.N. Guryanova, A.F. Volkov and M.E. Peisakhova, Zh. Obsch. Khim., 43 (1973) 1669; Chem. Abstr., 79 (1973) 141290n.
- 191 N.B. Yunusov, V.I. Murav'ev and B.M. Odintsov, Tezisy Dokl. Vses. Konf. Khim. Svyazi Poluprovodn. Polumetallakh., 5th (1974) 101; Chem. Abstr., 83 (1975) 139491t.
- 192 N.B. Yunusov, V.I. Murav'ev and B.M. Odintsov, Izv. Akad. Nauk SSSR, Ser. Khim., (1975) 2099; Chem. Abstr., 84 (1976) 37051c.
- 193 I.A. Safin, Paramagn. Rezonans, 1944—1969, Vses. Yubileinaya Konf. 1969 (Publ. 1971) 271. (Ed. A.I.N. Rivkind); Chem. Abstr., 76 (1972) 92775b.
- 194 L.P. Podmore, P.W. Smith and R. Stoessiger, J. Chem. Soc. (Dalton), (1973) 209.
- 195 V.A. Shishkin, V.S. Grechishkin, T.G. Balichev, G.A. Petrova and L.A. Cheburina, Izv. Akad. Nauk SSSR, Ser. Fiz., 39 (1975) 2537; Chem. Abstr., 84 (1976) 113892v.
- 196 L.A. Zemmukhova and R.L. Davidovich, Izv. Akad. Nauk SSSR, Ser. Fiz., 39 (1975) 2545; Chem. Abstr., 84 (1976) 113893w.
- 197 R.A. La Rossa and T.L. Brown, J. Am. Chem. Soc., 96 (1974) 2072.
- 198 I. Watanabe, J. Phys. Soc. Japan, 29 (1970) 1204.
- 199 T.B. Brill and Z.Z. Hugus, Jr., J. Phys. Chem., 74 (1970) 3022.
- 200 H. Hartman, M. Fleissner and H. Sillescu, Theor. Chim. Acta, 2 (1964) 63.
- 201 H. Hartman, M. Fleissner and H. Sillescu, Naturwissenschaften, 50 (1963) 591.
- 202 A.F. Schreiner and T.B. Brill, Inorg. Nucl. Chem. Lett., 6 (1970) 355.
- 203 T.B. Brill and Z.Z. Hugus, Jr., Inorg. Nucl. Chem. Lett., 6 (1970) 753.
- 204 I. Watanabe, H. Tanaka and T. Shimizu, J. Chem. Phys., 52 (1970) 4031.
- 205 C.W. Fryer and J.A.S. Smith, J. Organometal. Chem., 18 (1969) P-35.
- 206 C.W. Fryer, Chem. Ind. (London), (1970) 115.
- 207 A.F. Schreiner and T.B. Brill, Theor. Chim. Acta, 17 (1970) 323.
- 208 M.A.M. Meester, D.J. Stufkens and K. Vrieze, Inorg. Chim. Acta, 16 (1976) 191.
- 209 J.P. Yesinowski and T.L. Brown, J. Mol. Struct., 9 (1971) 474.
- 210 D.T. Clark, D. Briggs and D.B. Adams, J. Chem. Soc. (Dalton), (1973) 169.
- 211 P.W. Smith and R. Stoessiger, J. Chem. Soc., Chem. Commun., (1971) 279.
- 212 P.K. Kabada, J. Pirnat and Z. Trontelj., Chem., Phys. Lett., 32 (1975) 382.
- 213 R. Blinc, M. Mali, R. Osredkar and J. Seliger, J. Chem. Phys., 63 (1975) 35.
- 214 E.V. Bryukhova, I.M. Alymov and G.K. Semin, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 1898; Chem. Abstr., 79 (1973) 141295t.
- 215 A.N. Nesmeyanov, E.V. Bryukhova, I.M. Alymov, O.V. Nogina and V.A. Dubovitskii, Izv. Akad. Nauk SSSR, Ser. Khim., (1972) 1671; Chem. Abstr., 77 (1972) 139059j.
- 216 J.C. Hammel, R.J. Lynch, J.A.S. Smith, A. Barabas and E. Isfan, J. Chem. Soc., A, (1967) 3000.
- 217 T.L. Brown, P.A. Edwards, C.B. Harris and J.L. Kirsh, Inorg. Chem., 8 (1969) 763.
- 218 D.P. Spencer, J.L. Kirsh and T.L. Brown, Inorg. Chem., 9 (1970) 235.
- 219 J.D. Graybeal, S.D. Ing and H.W. Hsu, Inorg. Chem., 9 (1970) 678.
- 220 T.B. Brill and G.G. Long, Inorg. Chem., 10 (1971) 74.
- 221 A.N. Nesmeyanov, G.K. Semin, E.V. Bryukhova, T.A. Babushkina, K.N. Anisimov, N.E. Kolobova and Yu. V. Makarov, Izv. Akad. Nauk SSSR, Ser. Khim., (1968) 1953; Chem. Abstr., 70 (1969) 7981z.
- 222 A.N. Nesmeyanov, G.K. Semin, T.L. Khotsyanova, E.V. Bryukhova, N.A. Volkenan and E.I. Sirotkina, Dokl. Akad. Nauk SSSR, 202 (1972) 854; Chem. Abstr., 77 (1972) 12068f.
- 223 G.L. McKown and J.D. Graybeal, J. Chem. Phys., 44 (1966) 610.
- 224 J.D. Graybeal and S.D. Ing., Inorg. Chem., 11 (1972) 3104.
- 225 G.L. McKown and E.D. Swiger, Proc. W. V. Acad. Sci., 43 (1971) 137; Chem. Abstr., 81 (1974) 70689c.

- 226 T.J. Bastow and H.J. Whitefield, J. Inorg. Nucl. Chem., 36 (1974) 97.
- 227 J.D. Graybeal, C.F. Shoemaker and T. Gallaher, J. Magn. Reson., 20 (1975) 372.
- 228 G.A. Bowmaker, R. Whiting, E.W. Ainscough and A.M. Brodie, Aust. J. Chem., 28 (1975) 1431.
- 229 V.S. Grechishkin and M.Z. Yusupov, Zh. Strukt. Khim., 14 (1973) 1028; Chem. Abstr., 80 (1974) 76376z.
- 230 V.S. Grechishkin and M.Z. Yusupov, Magn. Reson, Relat. Phenom., (Ed., V. Hovi), Proc. Congr. AMPERE, 17th, 1972, (Publ. 1973), 270; Chem. Abstr., 80 (1974) 139154v.
- 231 V.S. Grechishkin and M.Z. Yusupov, Magn. Reson. Relat. Phenom., (Ed., I. Ursu), Proc. Congr. AMPERE, 16th, 1970 (Publ. 1971), 1033; Chem. Abstr., 78 (1973) 50205b.
- 232 A.D. Gordeev, V.S. Grechishkin and M.Z. Yusupov, Zh. Strukt. Khim., 12 (1971) 725; Chem. Abstr., 75 (1971) 156815d.
- 233 V.S. Grechishkin and M.Z. Yusupov, Opt. Spektrosk., 29 (1970) 804; Chem. Abstr., 74 (1971) 81586y.
- 234 M.Z. Yusupov, V.S. Grechishkin, A.T. Kozulin, V.P. Anferov and V.S. Verzilov, Org. Magn. Reson., 3 (1971) 515.
- 235 D.B. Patterson and A. Carnevale, J. Chem. Phys., 59 (1973) 6464.
- 236 R. Ikeda, D. Nakamura and M. Kubo, J. Phys. Chem., 72 (1968) 2982.
- 237 S. Saruwatari, R. Ikeda, D. Nakamura and M. Kubo, J. Magn. Reson., 9 (1973) 503
- 238 Yu.N. Hsieh, P.S. Ireland and T.L. Brown, J. Magn. Reson., 21 (1976) 445.
- 239 B.V. Dresvyankin, T.G. Balicheva, V.S. Grechishkin and I.V. Pologikh, Zh. Strukt. Khim., 15 (1974) 706; Chem. Abstr., 82 (1975) 24061q.
- 240 J. Voitländer, H. Klocke, R. Logino and H. Thieme, Naturwissenschaften, 49 (1962) 491.
- 241 A.N. Nesmeyanov, G.K. Semin, E.V. Bryukhova, T.A. Babushikina, K.N. Anisimov, N.E. Kolobova and Yu. V. Makarov, Tetrahedron Lett., (1968) 3987.
- 242 A.N. Nesmeyanov, G.K. Semin, E.V. Bryukhova, K.N. Anisimov, N.E. Kolobova, Yu.V. Makarov and T.K. Khotsyanov, Izv. Akad. Nauk SSSR, Ser. Khim., (1968) 929; Chem. Abstr., 69 (1968) 23545v.
- 243 M.D. Frayer and C.B. Harris, Inorg. Chem., 8 (1969) 2792.
- 244 E.V. Bryukhova, A.G. Ginsburg, T.L. Khotsyanova, V.V. Saatsazov and G.K. Semin, Izv. Akad. Nauk SSSR, Ser. Khim., (1973) 681; Chem. Abstr., 78 (1973) 166646a.
- 245 W.P. Anderson, T.B. Brill, A.R. Schoenberg and C.W. Stranger, Jr., J. Organometal. Chem., 44 (1972) 161.
- 246 T.B. Brill and A.J. Kotlar, Inorg. Chem., 13 (1974) 470.
- 247 S.L. Segel and R.G. Barnes, Phys. Rev., 107 (1957) 638.
- 248 C.B. Harris, Inorg. Chem., 7 (1968) 1691.
- 249 S.L. Segel and L.A. Anderson, J. Chem. Phys., 49 (1968) 1407.
- 250 E.V. Bryukhova, V.A. Agorov, I.M. Alymov and G.K. Semin, Izv. Akad. Nauk SSSR, Ser. Khim., (1974) 1919; Chem. Abstr., 81 (1974) 143847q.
- 251 E.A. Kravchenko, R.L. Davidovich, L.A. Zemmukhova and Yu.A. Baslaev, Dokl. Akad. Nauk SSSR, 214 (1974) 611.
- 252 I.A. Kyuntsel, Y.I. Rozenberg and A.D. Gordeev, Opt. Spektrosk., 31 (1971) 67; Chem. Abstr., 75 (1971) 114589c.
- 253 T.B. Brill, J. Magn. Reson., 15 (1974) 395.
- 254 T.L. Brown, Acc. Chem. Res., 7 (1974) 408.
- 255 I. Watanabe and Y. Yamagata, J. Chem. Phys., 46 (1967) 407.
- 256 I. Watanabe, J. Chem. Phys., 57 (1972) 3014.
- 257 C.B. Harris, Inorg. Chem., 7 (1968) 1517.
- 258 T.E. Boyd and T.L. Brown, Inorg. Chem., 13 (1974) 422.
- 259 K. Ogino and T.L. Brown, Inorg. Chem., 10 (1971) 517.
- 260 C.D. Pribula, T.L. Brown and E. Münck, J. Am. Chem. Soc., 96 (1974) 4149.

- 261 A.N. Nesmeyanov, G.K. Semin, E.V. Bryukhova, K.N. Anisimov, N.E. Kolobova and V.N. Khandozhko, Izv. Akad. Nauk SSSR, Ser. Khim., (1969) 1936; Chem. Abstr., 72 (1970) 17127f.
- 262 E.S. Moobery, H.W. Spiess, B.B. Garrett and R.K. Sheline, J. Chem. Phys., 51 (1969) 1970.
- 263 L.S. Chia, W.R. Cullen and M.C.L. Gerry, Can. J. Chem., 52 (1974) 3695.
- 264 L.S. Chia, W.R. Cullen, M.C.L. Gerry and E.C. Lerner, Inorg. Chem., 14 (1975) 2975
- 265 D.L. Lichtenberger, D.R. Kidd, P.A. Loeffler and T.L. Brown, J. Am. Chem. Soc., 98 (1976) 629.
- 266 J.C. Fuggle, D.A. Tong, D.W.A. Sharp, J.M. Winfield and J.H. Holloway, J. Chem. Soc. (Dalton), (1974) 205.
- 267 S.L. Carr, B.B. Garrett and W.G. Moulton, J. Chem. Phys., 47 (1967) 1170.
- 268 Yu.K. Maksyutin, E.N. Guryanova and G.K. Semin, Izv. Akad. Nauk SSSR, Ser. Khim., (1970) 1632; Chem. Abstr., 74 (1971) 8208x.
- 269 L.A. Lobanova, E.N. Guryanova and A.F. Volkov, Izv. Akad. Nauk SSSR, Ser. Fiz., 39 (1975) 2574; Chem. Abstr., 84 (1976) 187140v.
- 270 D.J. Merryman and J.D. Corbett, Inorg. Chem., 13 (1974) 1258.
- 271 R.F. Schneider and J.V. Dilorenzo, J. Chem. Phys., 47 (1967) 2343.
- 272 H. Chihara, N. Nakamura and S. Seki, Bull. Chem. Soc. Japan, 40 (1967) 50.
- 273 G. Wulfsberg, Inorg. Chem., 15 (1976) 1791.